

UNIFRAME RESOURCE DISCOVERY SERVICE

MONITORING AND MANAGEMENT SYSTEM

TR-CIS-0411-05

Srikanth Reddy April 07, 2005

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Uniframe Resource Discovery Service Monitoring and Managment
System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

193

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UNIFRAME RESOURCE DISCOVERY SERVICE
MONITORING AND MANAGEMANT SYSTEM

A Technical Report

Report Number

TR-CIS-0411-05

Submitted to the Faculty

Of Purdue University

By

Srikanth Reddy

In Partial Fulfillment of the

Requirements for the Degree

Of

Master of Science

April 2005

 ii

To Amma & Nana.

 iii

ACKNOWLEDGMENTS

The graduate education at Department of Computer and Information Science at

Indiana University – Purdue University –Indianapolis has been an excellent experience. I

would like to take the opportunity to express my gratitude to all those who made my

graduate study, a memorable experience and making this project possible.

I would like to thank my advisor, Dr. Rajeev R. Raje for his continuous guidance

and support during the course of my project. His continuous feedback and encouragement

helped me laying a strong foundation for the project. I would also thank him for his

encouragement in learning and exploring new concepts.

I would like to thank Dr. Andrew M. Olson for being on my advisory committee

and for his valuable advice in successfully completing the project. His meticulous efforts

to review my report and work are greatly appreciated.

I would like to thank Dr. Snehasis Mukhopadhyay for being on my advisory

committee and providing valuable inputs towards the project.

I would like to thank the U.S. Department of Defense and the U.S. Office of

Naval Research for supporting this research under the award number N00014-01-1-0746.

Many thanks to the faculty and staff of the Department of Computer and

Information Science for their cooperation.

I would like to thank my family for their support and for providing an opportunity

to study at IUPUI. Last but not the least; I would like to thank all my teammates of

UniFrame project and friends for their encouragement and assistance throughout the

course of my study.

 iv

TABLE OF CONTENTS

Page

TABLE OF CONTENTS... iv

LIST OF TABLES.. vii

LIST OF FIGURES ... viii

LIST OF TERMS... ix

ABSTRACT... xi

1. INTRODUCTION .. 1

1.1 UniFrame .. 1

1.2 Problem Definition and Motivation .. 2

1.3 Objectives: Statement of Goals... 3

1.4 Contributions... 4

1.5 Organization of this Report... 4

2. BACKGROUND AND RELATED WORK .. 6

2.1 UniFrame .. 6

2.1.1 Unified Meta-component Model (UMM)...6

2.1.2 UniFrame Approach ...8

2.1.1 Unified Resource Discovery Service (URDS) ...12

2.2 Monitoring and Management Systems ... 15

2.2.1 Globus Toolkit : Monitoring and Discovery Service15

2.2.2 Hawkeye ...16

2.2.3 Ganglia..16

2.2.4 Supermon..17

2.2.5 Relational Grid Monitoring Architecture ...18

2.2.6 Monitoring of Software Components ...19

 v

Page

3. MONITORING DISTRIBUTED SYSTEMS... 21

3.1 Importance of Monitoring... 21

3.2 Challenges of Monitoring in Distributed Systems.. 21

3.3 Classification of Monitoring Systems... 23

3.4 Monitoring Types.. 24

3.5 Monitoring in URDS... 25

3.5.1 Reasons for Monitoring URDS... 25

3.6 Features of the URDS Monitoring and Management System (URDSMMS)......... 26

3.6.1 System Administrator View.. 26

3.6.2 System Integrator View .. 28

4. DESIGN AND IMPLEMENTATION OF URDSMMS .. 30

4.1 Constituents of the URDSMMS ... 31

4.1.1 Controller ..31

4.1.2 URDS Manager ..32

4.1.3 Message Traffic Monitor ..37

4.1.4 Utilization Monitor ...38

4.1.5 Snapshot Monitor..41

4.1.6 Error Monitor..42

4.1.7 Query Handler ..43

4.2 User Interface Design ... 45

4.2.1 Use Case Diagrams...45

4.3 Implementation of the URDSMMS.. 47

4.3.1 Technology ...47

4.4 URDSMMS Implementation .. 51

4.4.1 Platform and Environment..53

4.4.2 Communication Infrastructure..53

4.4.3 Implementation Details...54

 vi

Page

5. EXPERIMENTATION AND VALIDATION ... 60

5.1 Experimental Setup... 60

5.2 Experiments to empirically validate the Monitoring System 60

5.3 Experiments to Test Scalability .. 63

5.4 Experiments to test the functionality of URDSMMS... 65

5.4 Usability testing of the interface ... 70

6. CONCLUSION... 72

6.1 Conclusion .. 72

6.2 Features of URDSMMS.. 73

6.3 Future Work .. 73

6.4 Summary ... 74

LIST OF REFERENCES.. 75

APPENDICES .. 80

APPENDIX A: State Diagrams of URDS Entities ... 81

APPENDIX B: Use Case Diagrams ... 92

APPENDIX C: Screen Shots of URDSMMS... 96

APPENDIX D: User Surveys ... 103

APPENDIX E: Class Diagram of URDSMMS Entities ... 108

APPENDIX F: Source Code... 109

 vii

LIST OF TABLES

Table Page

Table 2.1 UMM specification template .. 9

Table 5.1 Message Traffic of URDS .. 64

 viii

LIST OF FIGURES

Figure Page

Figure 2.1 UniFrame Approach .. 11

Figure 2.2 URDS architecture... 12

Figure 4.1 URDS Monitoring and Management Architecture.. 30

Figure 4.2 Use Case Diagram for a successful/unsuccessful login 41

Figure 4.3 Use Case Diagram for starting an entity.. 47

Figure 4.4 Components and Containers of J2EE Model... 48

Figure 4.5 URDSMMS Implementation... 52

Figure 4.6 main.jsp view... 55

Figure 5.1 Snapshot of URDS .. 57

Figure 5.2 Utilization of Headhunter .. 62

Figure 5.3 Utilization of Query Manager ... 63

Figure 5.4 Snapshot of URDS (showing 20 HHs).. 64

Figure 5.4 Snapshot of URDS (showing 20 HHs).. 65

APPENDIX A: State Diagrams of URDS Entities ... 81

APPENDIX B: Use Case Diagrams ... 92

APPENDIX C: Screen Shots of URDSMMS... 96

APPENDIX E: Classs Diagram of URDSMMS Entities ... 108

 ix

LIST OF TERMS

Acronym Term

AM Adapter Manager

AMIDST Application of Middleware for Services in Telimatics

API Application Programming Interface

AR Active Registry

CBSD Component-Based Software Development

CORBA Common Object Request Broker Architecture

DCS Distributed Computing System

DSM Domain Security Manager

FRIENDS FRamework Integrated ENgineering and Deployment of Services

GDM Generative Domain Model

GGF Global Grid Forum

GMA Grid Monitoring Architecture

gmetad Ganglia Meta Daemon

gmond Ganglia Monitoring Daemon

GIIS Grid Index Information Service

GRIS Grid Resource Information Service

GUI Graphical User Interface

HH Headhunter

HTTP Hypertext Transfer Protocol

ICB Internet Component Broker

IDL Interface Definition Language

J2EE JavaTM 2 Platform Enterprise Edition

J2SE JavaTM 2 Platform, Standard Edition

JDBC Java DataBase Connectivity

JRMP Java Remote Method Protocol

 x

JSP Java Server Pages TM

LDAP Lightweight Directory Access Protocol

LM Link Manager

MDS Monitoring and Discovery Service

MR Meta-Repository

MVC Model-View-Controller

.NET Microsoft .NET

OMG Object Management Group

QM Query Manager

QoS Quality of Service

RDBMS Relational Database Management System

R-GMA Relational Grid Monitoring Architecture

RMI Remote Method Invocation

RMI-IIOP Remote Method Invocation over Internet Inter ORB Protocol

S-expressions Symbolic expressions

SI System Integrator

TCP Transmission Control Protocol

UA UniFrame Approach

UI User Interface

UMM Unified Meta-component Model

URDS UniFrame Resource Discovery Service

URDSMMS UniFrame Resource Discovery Service Monitoring and Management

System

WSDL Web Services Description Language

XML EXtensible Mark-up Language

 xi

ABSTRACT

Reddy, Srikanth, M.S., Purdue University, May 2005. URDS – Monitoring and

Management System. Major Professor: Dr. Rajeev R. Raje.

Application development and deployment is moving from centralized sequential systems

towards parallel and Distributed Computing Systems (DCS), and there has been a

growing trend of developing software systems using a Component-based Software

Development (CBSD) approach. UniFrame is one such approach providing a seamless

framework for constructing a DCS by semi-automatic integration of heterogeneous

distributed software components. UniFrame Resource Discovery Service (URDS) is the

constituent of UniFrame, responsible for discovering software components. Since URDS

consists of many concurrent processes, understanding its execution behavior is a major

challenge. Such a discovery service requires a framework that provides information about

the execution behavior of the software system. The research of this project designs and

implements such a monitoring framework, UniFrame Resource Discovery Service –

Monitoring and Management System (URDSMMS) for the URDS. The monitoring

framework includes the tasks of collecting dynamic behavioral data, interpretation of this

data, and display of the processed information. A user interface was also developed for

easy operation of the monitoring system. To ascertain the benefits of this monitoring

system, an experimental analysis using the prototype has also been performed.

 1

1. INTRODUCTION

The rapid advancement in the processor and networking technologies and the need for a

greater computing power has led to the development of Distributed Computing Systems

(DCSs). A DCS is defined as sharing of hardware or software components located at

different computers connected over a network which communicate and coordinate by

passing messages [COU01]. Typically components in a DCS are characterized by their

geographical isolation and non-sharing of physical memory. As a result the integration of

these disparate components is a challenging task in the construction of a DCS.

Developing software from already available software components has been a growing

trend in building software systems. This is achieved by using Component-Based Software

Development (CBSD), which aims in developing software systems by assimilating

previously available software components. This CBSD approach can be applied in the

construction of a DCS, where the components have public interfaces and private

implementations, and are independently created and deployed over a network. These

deployed components can be heterogeneous, which makes the construction of a DCS a

complex task.

An important step in building a DCS using the component-based approach is the

discovery of heterogeneous software components. These components should regularly

discover one another, offer and utilize services, and agree on the cost and quality of

services. Such a scheme should provide for a scalable solution and hide the underlying

heterogeneity [RAJ01] of a DCS. UniFrame [RAJ00] project provides a solution for this

problem.

1.1. UniFrame

The UniFrame Approach (UA) [RAJ01] provides a comprehensive framework that

allows a seamless interoperation of heterogeneous and distributed software components.

 2

This framework incorporates the following concepts; (i) a meta-component model (the

Unified Meta Model - UMM) [RAJ00], with a hierarchical setup for indicating the

contracts and constraints of the components, (ii) an integration of Quality of Service

(QoS) at both individual component level and distributed system level, (iii) a mechanism

for the validation and assurance of QoS aspects, based on event grammars, and (iv)

generative rules, along with their formal specifications, for integrating an ensemble out of

available components.

The UA specifies a framework for component developers to create, test and validate

components from the Quality of Service (QoS) perspective. The developed components

are then deployed on the network and are available for system integrators to select and

semi-automatically generate a software solution for the DCS under consideration. The

framework also incorporates a resource discovery service called UniFrame Resource

Discovery Service (URDS) [SIR03]. The URDS is responsible for discovering the

software components dynamically and hence, providing the System Integrators a

directory-style access to services. Chapter 2 presents an overview of URDS architecture.

1.2. Problem Statement and Motivation

The URDS, the discovery service entity of UniFrame, contains many concurrent

processes for carrying out components discovery. The challenging issue in this discovery

service is to control and coordinate different processes. To manage such processes, there

is a need for a monitoring system. While numerous monitoring systems have been

developed for different DCS, such as Hawkeye [HAW], Monitoring and Discovery

Service (MDS) [MDS2], Ganglia [MAS04], they are not specifically developed for

software resource discovery services. Since these system deals with hardware related

resources, they do not focus on software resources. This research project details a

monitoring system that can be used to dynamically monitor and administer the various

processes and entities encompassing the URDS.

 3

The motivation for creating a monitoring service for URDS is as follows: In URDS, the

component selection is based on their computational, co-operational, auxiliary attributes

and QoS metrics [SIR03]. To do this process, URDS consists of numerous entities which

communicate among themselves. Because of this communication, large numbers of inter-

process and intra-process messages are issued. To control and coordinate these, URDS

must be monitored throughout its execution so that the system behavior can be observed

based on the state changes and failures. Observing this behavior would help the system

administrator in determining the overhead of the URDS and hence could decide on

deploying new entities or not.

Monitoring would assist the system administrator with information about each entity in

URDS and its activities on the remote/local machines. Monitoring would also aid in

providing details such as the response time, utilization of different entities of URDS, etc.

This would help to improve the throughput of the system and hence the overall

performance of URDS. Presently, URDS lacks such a monitoring system. Consequently,

a system administrator is forced to depend on manual supervision for detecting faults or

doing any other kind of monitoring. A monitoring system is essential for abstracting the

details of the underlying system, making it possible even for non-expert users to oversee

the functioning of the system and take preventive measures, and hence acting as a

controlling authority. The UniFrame Resource Discovery Service - Monitoring and

Management System (URDSMMS) is designed to provide these facilities for monitoring

and administering the system.

1.3. Objectives : Statement of Goals

The project entails the development of a URDSMMS, through which system

administrators can control and coordinate different activities in URDS, and system

integrators submit queries and select components to compose distributed software

systems.

 4

The specific objectives of this project include:

• To analyze the behavior of entities in URDS.

• To develop a system monitoring prototype for URDS, encompassing system

administrator and system integrator views.

• To provide facilities for management of URDS, by offering services such as,

initiation and termination of different entities in URDS.

URDSMMS aims at providing the above functionality via a graphical interface. The

system continuously provides the details of various entities of through this graphical

interface.

1.4. Contributions

The contributions of this project are:

• It proposes a framework for dynamic monitoring and management of a resource

discovery service.

• It develops a monitoring and management interface, incorporating two views;

system administrator and system integrator, for the operation of URDS.

• It implements time-driven and event-driven approaches for monitoring

components of a discovery service.

1.5. Organization of this Report

The report is organized into six chapters. An introduction, along with the problem

definition and motivation, objectives, and the contributions are provided in this chapter.

Chapter 2 discusses the background and related work of this report. Chapter 3 describes

the existing monitoring systems, and features that can be implemented for a monitoring

and management system of URDS. Chapter 4 gives the design and implementation

details of the different entities that form the URDSMMS and also the design of interface

for the monitoring system. The experimentation of URDSMMS and analysis about, how

the features are helpful in analyzing the system is discussed in Chapter 5. Chapter 6

 5

provides the conclusion of this research work, the possible future enhancements, and the

summary of this report.

 6

2. BACKGROUND AND RELATED WORK

This chapter presents an overview of the UniFrame, which forms a basis for URDSMMS.

The chapter also provides an overview of the other related monitoring systems and

discusses some of the approaches to monitor software components.

2.1. UniFrame

As indicated in the first chapter, the objective of UniFrame is to provide a framework for

a seamless integration of heterogeneous and distributed software components. The

UniFrame consists of the Unified Meta-component Model (UMM) [RAJ00] and the

UniFrame Approach (UA) [RAJ01]. The UA is a component-based software

development approach based on UMM for creating a DCS out of available heterogeneous

distributed software components. A brief description of UMM is presented in sub-section

2.1.1 and a description about UA is presented in 2.1.2.

2.1.1. Unified Meta-Component Model (UMM)

The Unified Meta-component Model (UMM) [RAJ00] is the fundamental concept behind

the UniFrame project. It unifies the existing and emerging distributed component models

under a common meta-model. The UMM helps in allowing resource discovery,

interoperability and collaboration among the heterogeneous components. The UMM

consists of three parts and they are as follows:

a) Components: In UniFrame, components are autonomous entities; they adhere to

different distributed component models, and maintain a state, identity and behavior.

These components have well-defined (public) interfaces and private implementations.

Additionally each component in UMM have three aspects namely (i) Computational

Aspect, (ii) Cooperative Aspect, and (iii) Auxiliary Aspect.

 7

The computational aspect reflects the task(s) carried out by each component which

in-turn depends on the objectives of the task, techniques used to accomplish the

objective and a specification about the functionality of the component. The UMM

indicates the computational aspect using a mixed approach in which the informal text

is used to provide book keeping information about the component, and a precise

formal part for the description of computation, its associated contracts and the level of

service offered by the component. The cooperative aspect indicates the interaction of

the components. It indicates the other components that can collaborate with the

component under consideration. The auxiliary aspect deals with issues such as, the

mobility, security and fault tolerance of the component. [RAJ00] describes in detail

about the above three aspects.

b) Services and Service Guarantees: A service as defined in [RAJ00] could be an

intensive computational effort or an access to its underlying resources. In UniFrame,

components that offer services should provide certain Quality of Service (QoS)

guarantees, so that those components can be selected for the construction of a DCS.

The QoS offered by each component depends on, the computation performed, the

algorithm used, the expected computational effort and resources required, the cost of

each service, and the dynamics of supply and demand [RAJ00]. In UMM it is

necessary to specify the QoS that the component can offer in terms of the QoS

parameters listed in the QoS catalog [BRA02].

c) Infrastructure: In UMM, the infrastructure which is necessary for the discovery of

components is provided by UniFrame Resource Discovery Service (URDS). The

deployed components can belong to different component models and their discovery

is based on certain functional and non-functional constraints. The URDS

infrastructure is primarily made up of Headhunters and Internet Component Broker

[RAJ01]. Some of the aspects of URDS will be further discussed in detail in section

2.1.3.

 8

2.1.2. UniFrame Approach (UA)

The UA [RAJ01] attempts in providing a framework for the integration of distributed

heterogeneous software components. The UA has two levels for the generation of a DCS:

a) the component development and deployment (component level), and b) an automatic

generation of system using components and validation of system QoS (system level). The

component level allows component developers to create, test and verify components from

the point of view of QoS requirements and deploy them on a network. The system level

allows system integrators/component assemblers to select and generate a software

solution for a DCS under consideration by an automatic or semi-automatic generation

process.

The UniFrame Approach uses a Generative Programming [CZA00] paradigm, to generate

a system from components. Therefore, this process has an underlying assumption that a

DCS is built around a knowledgebase which supports the component assembly. Here, the

components are created for a specific application domain, based on an accepted and a

standardized knowledgebase. The UniFrame knowledgebase (as shown in Figure 2.1) is

assumed to be created by domain experts. The knowledgebase consists of three parts:

general information, which includes a description for the modeled domain; a problem

space, used by an application programmer to specify the needs; and a solution space,

which contains various models including configuration knowledge to provide solutions

for a DCS family. The UniFrame provides a specification mechanism called UMM

Specification. The component developer uses this specification to develop components

for a particular domain. Subsequently, the developed component along with its

specification is deployed over a network. A sample UMM specification template is

provided in Table 2.1.

 9

Table 2.1 UMM specification template [ANJ04]

<?xml version="1.0" encoding='utf-8'?>

<!-- UMM description for DocumentValidationServer in the banking
domain example -->

<UMM_ConcreteComponent>
 <ComponentName> UserValidationServer </ComponentName>
 <ComponentSubcase> UserValidationServerCase1 </ComponentSubcase>
 <DomainName> Document </DomainName>
 <SystemName> DocumentManager </SystemName>
 <Description> Provide document validation service in document.
</Description>
 <ComputationalAttributes>
 <InherentAttributes>
 <id> magellan.cs.iupui.edu:1610/UserValidationServer</id>
 <Version> 1.0 </Version>
 <Author> Zhisheng Huang</Author>
 <Date> August 2002 </Date>
 <Validity> Yes </Validity>
 <Atomicity> Yes </Atomicity>
 <Registration> magellan.cs.iupui.edu:1310/HeadHunter
</Registration>
 <Model> Java RMI </Model>
 </InherentAttributes>
 <FunctionalAttributes>
 <Purpose> Act as validation server for users in document.
</Purpose>
 <Algorithms>
 <algorithm> JFC </algorithm>
 </Algorithms>
 <Complexity> O(1) </Complexity>
 <SyntacticContract>
 <ProvidedInterfaces>
 <Interface> IValidationCase1 </Interface>
 </ProvidedInterfaces>
 <RequiredInterfaces>
 </RequiredInterfaces>
 </SyntacticContract>
 <Technologies>
 <technology> Java RMI </technology>
 </Technologies>
 <ExpectedResources>
 <resource> CPU: 500 mhz </resource>
 <resource> Memory: 1.0 Gb </resource>
 </ExpectedResources>
 <DesignPatterns>
 <pattern> </pattern>
 </DesignPatterns>
 <KnownUsage>
 <usage> </usage>
 </KnownUsage>

 10

Table 2.1 UMM specification template (cont’d)

 <Aliases>
 <alias> </alias>
 </Aliases>
 </FunctionalAttributes>
 </ComputationalAttributes>
 <CooperationAttributes>
 <PreprocessingCollaborators>
 <Collaborator> DocumentTerminalCase1 </Collaborator>
 </PreprocessingCollaborators>
 <PostprocessingCollaborators>
 </PostprocessingCollaborators>
 </CooperationAttributes>
 <AuxiliaryAttributes>
 <Mobility> No </Mobility>
 <Security> L1 </Security>
 <FaultTolerance> L1 </FaultTolerance>
 </AuxiliaryAttributes>
 <QoS>
 <QoSMetrics>
 <Metric>
 <ParameterName> throughput </ParameterName>
 <FunctionName> validate </FunctionName>
 <Value> 675 </Value>
 </Metric>
 <Metric>
 <ParameterName> endToEndDelay </ParameterName>
 <FunctionName> validate </FunctionName>
 <Value> 1541 </Value>
 </Metric>
 </QoSMetrics>
 <QoSLevel> L1 </QoSLevel>
 <Cost> L1 </Cost>
 <QualityLevel> L1 </QualityLevel>
 </QoS>
</UMM_ConcreteComponent>

 11

The generation of a system from individually developed and deployed components, starts

with a system integrator submitting a query for a specific DCS to the UniFrame Process.

Using the domain knowledge, a set of functional and QoS-based search parameters are

extracted from the query in the form of UMM descriptions and then submitted to the

URDS. The head-hunters of the URDS aid in discovering the components which meet

the functional and QoS requirements. The discovered components are returned to the

system integrator, who then selects the components and asks the UniFrame generator to

construct the DCS. Before the system it is deployed, it is tested for its desired

functionality and QoS requirements. If the functionality or QoS requirements are not met,

then another system is built from the collection of components and is tested in an iterative

manner. The URDS, thus, forms a critical piece in the UA by providing the appropriate

components to the system integrator.

Figure 2.1. The UniFrame Approach

 12

2.1.3. UniFrame Resource Discovery Service (URDS)

The URDS encompasses of the following entities: a) Internet Component Broker (ICB),

b) Headhunters (HHs), c) Meta-Repositories, d) Active Registries, e) Services (C1… Cn),

and f) Adapter components (AC1...ACn). Figure 2.2 shows interactions between different

components of the URDS architecture.

DSM

C1 C2 AC1 AC2

ICB

www

AR
RMI

C3

C2

C1

Headhunter
MR

AR
ORB

C5

C4 AR
. NET

C8

C7

C6

Headhunter
MR

Headhunter
MR

QM LM AM

a) Internet Component Broker (ICB): The ICB is a collection of four sub-components

the Domain Security Manager (DSM), the Query Manager (QM), the Link Manager

(LM) and the Adapter Manager (AM). The ICB constitutes the communication

infrastructure necessary to locate and identify services, enforce domain security and

to handle the negotiation between heterogeneous components. All the services

provided by the ICB are reachable at well-known locations. It is assumed that there

Figure 2.2. URDS Architecture [DEV05]

 13

are fixed number of ICBs, deployed at well-known locations hosted by corporations

or organizations supporting UniFrame.

o Domain Security Manager (DSM): The DSM functions as an authorized third-

party that provides security and integrity of multicast announcements, which

are necessary for the discovery process of URDS. The DSM is responsible for

the secret key generation and distribution for ICB. It also enforces group

memberships and access controls to multicast resources through

authentication and the use of access control lists (ACL).

o Query Manager (QM): The QM is responsible for translating a system

integrator’s/component assembler’s requirement into a Structured Query

Language (SQL) statement and dispatching the query to the ‘appropriate’

Headhunters (HHs). These HHs are selected based upon the domain specified

in the SQL query and also based on the profile information maintained by the

QM [DEV05]. The QM in-turn receives a list of service provider components

which match the search criteria. The QM in conjunction with the LM is

responsible for propagating the queries to other linked ICBs.

o Link Manager (LM): The LM is responsible for establishing links between

ICBs to form a federation, and to propagate queries received from QM to

other ICBs. The LM is configured by an ICB administrator with the location

information of LMs and other ICBs, which helps in establishing links.

o Adapter Manager (AM): The AM serves as a registry/lookup service for

clients seeking adapter components. These components act as the glue-

wrapper [TUM04], allowing interoperability among off-shelf components

chosen to implement the distributed system. The adapter components register

with the AM and while doing so they indicate their specialization, i.e., which

component models they can bridge efficiently. The AM is also capable of

dynamic and semi-automatic generation of glue [TUM04], which help in

 14

bridging heterogeneous service components. The system

integrator/component developer can contact the AM for adapter components

which match their needs.

b) Headhunter (HH): The HH is one of the principal [SIR03] entities of URDS. It is

responsible for discovering service providers and registering the functionality of these

service providers. HHs returns a list of service providers to the ICB that matches the

requirements of the system integrator’s/component assembler’s request forwarded by

the QM.

c) Meta-Repository (MR): The MR serves as the data repository for a HH, it stores the

UniFrame specification information (meta-data) of the service components which

adhere to different heterogeneous models.

d) Active Registry (AR): The AR serves as a registry/lookup service for a particular

distributed computing model (such as RMI, .NET, CORBA, etc.), and is extended to

listen and respond to multicast messages from HHs.

e) Services (S1..Sn): The services may belong to heterogeneous component models such

as RMI, .NET, CORBA, etc. Each of these services is identified by its service type

name and its UMM Specification.

f) Adapter Components (AC1..ACn): Adapter Components serves as bridges between

heterogeneous components. These components can by dynamically synthesized by

AM using glue-wrapper technology [TUM04].

The URDS architecture is organized into a federated hierarchy of ICBs and HHs, thereby

promoting scalability and fault handling [MYS04]. Each ICB consists of one level of zero

or more HHs attached to it and all ICBs that are participating in the URDS are

unidirectionally linked to form a federated group. The discovery process in URDS is

based on an administratively defined application domain (such as Heath Care, Banking or

 15

Manufacturing) and each domain is supported by the sector or organization providing the

URDS service. Finally, the URDS discovery process is based on periodic and secure

multicast announcements.

In URDS, there is no controlling authority that keeps track of the behavior of the system,

because of which the system administrator is not completely aware of the activities in the

system. A monitoring system would enable control and coordination of such activities of

the URDS. The following section discusses different approaches to monitor distributed

systems.

2.2. Monitoring and Management Systems

The monitoring is defined as the process of dynamic collection, interpretation and

presentation of information concerning objects or software processes under analysis

[JOY87]. The monitoring of a distributed system is critical. It facilitates a variety of tasks

such as the representation of information, fault handling, security and system

management. The following sub-sections give a brief description about some of the

existing monitoring systems, and Chapter 3 discusses in detail different monitoring

systems and their behavior in a distributed computing scenario.

2.2.1. Globus Toolkit : Monitoring and Discovery Service

The Monitoring and Discovery System (MDS) [MDS2] is the information services

component of the Globus Toolkit [GLO]. It provides details about the available resources

on the Grid [FOS99] and their statuses. MDS2 is a version of MDS, which is built upon

the Lightweight Directory Access Protocol (LDAP) [LDA], and uses an extensible

framework for monitoring static and dynamic information, such as the status of a Grid

and its components, networks, and storage systems.

MDS2 is primarily used to deal with the resource selection problem of Grid, i.e., to

identify the host or a set of hosts on which user can run the application. MDS2 provides a

 16

uniform and easy to use interface, for monitoring of the data collected by the lower-level

Information Providers (IPs) [CZA01]. It has a de-centralized structure, which helps in

scaling and in handling static and dynamic data about resources and associated queues.

2.2.2. Hawkeye

Hawkeye [HWA] is a monitoring tool developed by the Condor group, utilizing Condor

[CON] and ClassAd [CLA] core technologies. It has been designed to monitor various

attributes of a collection of systems. It automates the problem detection and software

maintenance in a DCS. For example, Hawkeye identifies high CPU load, high network

traffic, and resource failure with in a distributed system.

The architecture of Hawkeye comprises four major components: Hawkeye pool,

Hawkeye manager, Hawkeye monitoring agent, and Hawkeye module. These

components are organized in a four-level hierarchical structure. In a set of computers

(known as a “pool”), one computer serves as Hawkeye Manager and the rest function as

Hawkeye monitoring agents. The Hawkeye Manager serves as the head of the pool; it

collects all information and handles user queries. A Monitoring Agent is a distributed

information service component that collects ClassAds (which are a set of attribute value

pairs) and integrates them and sends the result to the Manager at specified time intervals.

A Hawkeye Module is a simple sensor that announces the resource information in a

ClassAd format. The above mentioned architecture aids in easy monitoring and software

maintenance within a pool. Hawkeye is designed to gather information such as memory

usage, system load, disk space, and other hardware resources; it has not been designed to

monitor software resources.

2.2.3. Ganglia

Ganglia [MAS04] is a Java-based, scalable distributed monitoring system for high-

performance computing systems such as clusters and Grids. It is based on a hierarchical

design targeted at federations of clusters, relies on a multicast-based listen/announce

 17

protocol to monitor state within clusters and uses a tree of point-to-point connections

amongst representative cluster nodes to federate clusters and aggregate their state.

Ganglia consists of three modules, namely gmond (Ganglia Monitoring Daemon), gmetad

(Ganglia Meta Daemon) and Ganglia web front-end. The gmond provides monitoring on

a single cluster by implementing the listen/announce protocol and responding to client

requests by returning an XML representation of its monitoring data. gmond runs on every

node of a cluster. On the other hand, gmetad provides a federation of multiple clusters. A

gmetad service can be configured in such a way that it sends data it received to other

gmetad services. In that way, it is possible to establish monitoring of several clusters.

Ganglia’s web front-end allows users to see graphs and all historical data saved in Round-

Robin databases, allowing all cluster and host metrics to be viewed in real-time. Ganglia

is designed to monitor information such as CPU load, memory and other hardware related

resources; it does not monitor software resources.

2.2.4. Supermon

Supermon [SOT02] is a distributed monitoring system for clusters that causes

insignificant load on the client and provides a flexible set of tools for this purpose.

Supermon uses a client-server data protocol based on symbolic expressions (S-

expressions) at all levels of Supermon, i.e., from individual nodes to entire clusters.

Supermon mainly consists of three different components:

• A loadable kernel module providing data (CPU information, memory information,

etc.), in the form of S-expressions,

• A single node data server (Mon) that serves data prepared by the kernel module,

• A data concentrator (Super-mon) which combines samples from various nodes

into a single data sample through a TCP port.

Supermon uses a modified version of the SunRPC rstat protocol to collect data from

remote cluster nodes. This protocol is based on S-expressions instead of XML with the

 18

advantage that it can operate in a heterogeneous environment. Supermon also provides a

fast and efficient data collection capability. Supermon is designed to monitor the

hardware resources; it lacks the capability of dealing with software resources.

2.2.5. Relational Grid Monitoring Architecture

The Relational Grid Monitoring Architecture (R-GMA) [DAT02] is a Grid Information

and Monitoring System which has been developed within the European DataGrid Project

[DAT02]. R-GMA is an implementation of Grid Monitoring Architecture (GMA)

[TIE02] within the Global Grid Forum (GGF) [GGF], and it is based on the Relational

Database Management System (RDBMS) [FIS01] and the Java Servlet technology. It is

mainly used where notification of events is required, i.e., a user can subscribe to a flow of

data with specific properties directly from a data source. For example, a user can

subscribe to a load-data data stream, and create a new Producer/Consumer pairing to

allow notification when the load reaches some maximum or minimum.

The GMA is an architecture for monitoring entities that show the characteristics of Grid

platforms. The GMA [TIE02] consists of three entities, namely Consumers, Producers

and a Registry. In the GMA, the producers register themselves with the registry and

describe the type and structure of information they want to make available to the Grid.

Consumers can query the registry to find out what type of information is available and

locate producers that provide such information. Once this information is known, the

consumer can contact the producer directly to obtain the relevant data. By specifying the

consumer/producer protocol and the interfaces to the registry, one can build inter-

operable services.

The R-GMA architecture closely maps with that of GMA architecture. In R-GMA, when

a Producer is created, its registration details are sent to the Registry via the

ProducerServlet. The Registry records details about the Producer, which include

description and view of the data published (table name and the row(s) of a table). The

ProducerServlet registers this information in the RDBMS, which holds the information of

 19

all Producers. The ConsumerServlet of the Consumer consults the Registry to locate

suitable Producers. The Registry then returns a list of Producers to the ConsumerServlet

which matches Consumer’s interests. Then the Producer and Consumer directly

communicate via their respective Servlets.

2.2.6. Monitoring of Software Components

[GAO00] discusses component traceability and maintenance issues and solutions in

supporting software components and component-based systems. It provides a Java

framework to track and monitor software components in component-based systems. It

deals with both in-house and third party components. It also introduces the concept of

traceable software components and a new event-based tracking model for the proposed

framework. Traceability of software component refers to the extent of its built-in

capability of tracking the status of component attribute and behavior. The event-based

tracking model is a systematic mechanism that supports engineers in monitoring and

checking the behaviors of components and their interactions in a component-based

program. [GAO00] addresses different classifications for component traces, such as

operational traces, performance traces, state traces, event traces and error traces. It also

discusses component traceability and explains how to construct components which can be

monitored, to check their status, performance, behavior and interactions among them.

URDSMMS employs the performance trace and error trace approaches to show the

performance of the system and errors for a particular entity of the URDS.

[DIA00] presents a framework for monitoring component interactions. This framework

supports the development and testing of distributed software applications. The

monitoring framework is part of a larger framework which is built on top of a CORBA

distributed processing environment, which supports development and testing of

distributed software applications. This framework has been designed and implemented in

close co-operation between the FRIENDS (FRamework Integrated ENgineering and

Deployment of Services) project [FRI] and the AMIDST (Application of Middleware for

Services in Telimatics) [AMI].

 20

The proposed framework in [DIA00], considers an “Object Management Group (OMG)

Interface Definition Language (IDL) specification as a contract for distributed

interactions and allow a precise monitoring of interaction activities between the

application components”. It addresses the monitoring by observing the system behavior at

specific observation (or monitoring) points and effectively representing the information

in a graphical or textual manner. The above prototypical monitoring framework is used to

test services developed for large application frameworks [FRI].

The systems mentioned in subsections 2.2.1 – 2.2.5, dealt with the monitoring of

hardware related resources. These frameworks were implemented to support large scale

clusters and grids and, hence, do not focus on software components discovery. The

frameworks in subsection 2.2.6 deal with monitoring software components ([GAO00]),

particularly in component based systems [DIA00] deals with component interactions.

Though these prototypes were implemented for distributed systems, there is no work

pertaining to component discovery. The URDSMMS is a prototype for monitoring the

URDS, which uses some of the monitoring principles of the above related work (this will

be later discussed in chapter 3).

This chapter presented a brief overview about the UniFrame and URDS. The chapter also

discusses some of the related monitoring systems and the approaches for monitoring a

DCS. The next chapter provides an overview of monitoring in distributed systems, the

challenges faced in it and the various features of URDSMMS.

 21

3. MONITORING DISTRIBUTED SYSTEMS

The previous chapter gave an overview of UniFrame and relevant related work associated

with URDSMMS. This chapter provides details about monitoring systems, its importance

and various challenges involved with a monitoring system in a distributed environment

and different approaches followed to monitor distributed systems. The chapter also

discusses about the features that have been implemented in URDSMMS and the

importance of these features.

3.1 Importance of Monitoring

Monitoring can be defined as the process of dynamic collection, interpretation and

presentation of information concerning objects or software processes under scrutiny

[JOY87]. It is the process of collection of dynamic behavioral data during program

execution, interpreting and analyzing that data and displaying the processed information

to the user in form of text, graphs or animation.

Monitoring is an essential and efficient way of obtaining information in a distributed

component system, where managerial decisions can be made and also the behavior of it

can be observed. Monitoring information can also help in observing the component

interactions. In a DCS, monitoring helps in a wide variety of tasks, such as testing,

debugging, visualization system management, security, fault management, performance

management and configuration [SCH95, MAN95].

3.2 Challenges of Monitoring in Distributed Systems

The distribution of entities in a DCS makes its monitoring more complicated than a

centralized system. This is due to the fact that a typical distributed system may consist of

a number of cooperating processes, executing on different remote machines and

communicating via message passing. Moreover monitoring requirements are not static in

 22

either a distributed or a centralized system; but evolve as the system may be dynamic.

Thus, there may be a need to dynamically change the patterns of activities which are

monitored without having to bring the operation of the underlying system to a halt.

Additionally, there are a number of reasons why the debugging, testing and evaluation of

distributed systems is more difficult when compared to the same activity in sequential

programs:

• A distributed system has many foci of control. Thus the sequential monitoring and

debugging techniques, such as tracing and breakpoints, based on process state

and program counter, need to be extended to be applicable to distributed systems

[JOY87].

• Delays in transferring of information mean this information may be out of date.

• Communication delays among nodes in a distributed system, makes it difficult to

determine a global view of the system status.

• Due to large number of objects which generating monitoring information,

collecting all the information to monitor becomes a difficult task.

• It is possible that the distributed system may be heterogeneous in nature and a

canonical form is needed to encode messages passed between these heterogeneous

systems [SCH95].

URDSMMS addresses a subset of the above mentioned problems. URDSMMS is built

over a discovery service (URDS), which is a distributed system by itself. The monitoring

system collects information from all the entities of this DCS based on the process state

and message communication between entities. URDSMMS is designed to collect

information from a large number of objects. The monitoring system does not consider

any, message losses, out of date or out of order events [LAM78], or heterogeneity at this

point (further discussed in chapter 6).

 23

3.3 Classification of Monitoring Systems

There are three broad approaches for the classification of monitoring systems, namely,

hardware, software and hybrid monitoring systems.

In hardware monitoring, a specialized hardware is essential to monitor the system and

detect the events. The hardware monitoring performs event detection by having sensors

or a detection circuitry. In such a case, it is difficult to relate recorded events in the

monitored program, i.e., to find the problem-oriented reference [HOF94]. Hardware

monitoring systems have the advantage of being non-intrusive, and being efficiently

accurate, but such monitoring systems require external hardware resources, which limits

the amount of interference with the monitoring system.

The software monitoring systems uses software programs to observe the monitored

entities. This requires system resources such as the CPU and memory. These monitored

programs are usually instrumented by inserting monitoring instructions called software

probes to collect information. In this approach, each monitored event can be associated to

a point in a program. Software systems are more flexible and portable as they provide an

easy construction and easy portability to other platforms. However, software monitoring

is intrusive in nature, as it has to share the system resources with the monitored system.

The hybrid monitoring systems attempts to combine the advantages of hardware and

software systems. It brings together the non-intrusive nature of hardware approaches and

the flexibility of the software approaches. ZM4 [HOF94] is an example of hybrid

monitoring system that allows monitoring programs to be evaluated for performance and

program behavior to be observed.

The present monitoring system (URDSMMS) uses the software monitoring approach to

provide flexibility and platform portability.

 24

3.4 Monitoring Types

The basic types of monitoring approaches based on the information collection are the

Time-driven monitoring (sampling) [HOF94] and the Event-driven monitoring (tracing)

[HOF94].

Using sampling, information about the monitored system is collected synchronously (at a

specific time rate), or asynchronously (through direct request of the monitoring system).

On the other hand, in event-driven monitoring, information is collected when an event

occurs in the system.

The event-driven monitoring consists of the reporting of all occurrences of an event

within a certain interval of time. It is synchronous with the occurrence of an event; it is

performed when all occurrences of an event must be known (e.g., when collecting history

information) or when each occurrence of an event must be followed by a certain action.

On the other hand, sampling is the collection of information at the request of the monitor.

Sampling may be asynchronous with the occurrence of an event.

The event-driven monitoring is more intrusive then time-driven because tracing is

synchronous with the occurrence of an event. The time-driven monitoring provides

statistical information about the program execution, whereas event-driven monitoring

represents the behavior of a program by a sequence of events. Some monitoring systems

implement both monitoring types to satisfy the varying requirements and constraints

[MAN95]. The URDSMMS uses both time-driven monitoring and event-driven

approaches so as to collect monitoring data asynchronously. It uses event-driven

approach to handle the events and uses a time-driven approach for updating the web

interface.

 25

3.5 Monitoring in URDS

The existing URDS architecture provides a framework for the discovery of software

components for constructing a DCS. Currently, URDS is not provided with a monitoring

system, which would help in a better management and coordination of its entities. The

following section discusses different monitoring scenarios for the URDS. The features

that should be incorporated in the URDS for its monitoring and the benefits obtained in

considering these features are discussed.

3.5.1 Reasons for Monitoring URDS

The URDS consists of many entities which collectively account for the resource

discovery process in UniFrame. Among these entities, numerous messages are passed

concurrently for the discovery of software components. To control and coordinate such

concurrent activities in URDS, monitoring is essential.

Monitoring assists the system administrator with the knowledge about the activities on

the local and remote machines. It provides consolidated, abstracted and dynamic data;

this is represented in the form of text or dynamic graphs. Monitoring can determine the

performance of the overall system, such as the average response time for discovering the

software components. Monitoring also helps the administrator in knowing the number of

active entities (Headhunters, Active Registries) in the system.

Monitoring of the URDS can also include some system management activities such as,

initiation and termination of resources (entities) according to the necessity, which may

help in improving the response time for discovering components. Using this monitoring

interface, the system administrator should be in a position to take corrective steps, in case

of errors or failures. Monitoring via an easy-to-use interface improves the usability of

URDS and helps in easy understanding of the system for a new user. The following

section describes the monitoring features of URDSMMS.

 26

3.6 Features of the URDS Monitoring and Management System (URDSMMS)

The URDSMMS is provided with two views; administrator view and system integrator

view. These two views help in providing a basic separation of concerns and address the

issues of access privileges to the URDS. The URDSMMS provides supervisory features

for the administrator, allowing to monitor and manage all the activities of URDS,

whereas the system integrator is provided with only restricted features, allowing him to

submit a query and retrieve results. Necessary secure login is provided to distinguish

between the administrator and the system integrator.

3.6.1 System Administrator View

This subsection provides details about the various features that are considered in the

System Administrator View and how they are helpful for controlling and coordinating

activities in URDS.

Start Entities: The system administrator is given an option of running different entities of

URDS using a GUI. This feature helps the administrator in starting the Domain Security

Manager, Query Manager, Headhunters and Active Registries at any remote/local

location. This avoids the administrator having to run the entities using a console, which is

cryptic and error-prone.

URDS Snapshot: This gives the statistical details of all entities currently active in URDS.

Details such as the location of entities, number of Headhunters or Active Registries

currently active and number of queries currently being processed by the system can be

known. An option is provided for the dynamic display of attributes (such as the name, the

location and the domain) of certain entities (e.g., Headhunters and Active Registries).

This feature also displays the ranking [DEV05] associated with each Headhunter, which

might help the Query Manager is selecting the best Headhunter and propagating the

query to it. This ranking is given by the Query Manager based on the components

returned by Headhunter for each query.

 27

Message Traffic: In URDS, different kinds of message communications are possible

among its constituents (as described in Chapter 2). Because of this traffic, a system

administrator may be interested to know a classification of the traffic. The messages are

classified into three broad categories, namely authentication, query processing and

component update. The authentication messages consist of the principals (Headhunters

and Active Registries) and Query Manager (QM) contacting the Domain Security

Manager (DSM) for authentication. The query processing consists of the System

Integrator (SI) issuing the query to QM, which in-turn passes it to Headhunters and

retrieves the components list. The software components (or services) registering to the

Active Registry and the Active Registry propagating them to the Headhunters, fall under

the third category, the component update. The above classification helps the system

administrator in knowing what activity is dominant at a particular time in the system and

thereby controlling the traffic causing parameters as necessary.

Average Response Time Graph: The administrator view is provided with a graph which

represents the average query response time of the URDS. The graph depicts the response

time for the most recent 20 queries. This graph also helps in determining the performance

of the system. If the response time is too high, then maybe the load on the system is too

high. Thus, such a graph can assist in identifying bottlenecks in the URDS, which could

be addressed by the system administrator.

Utilization of Query Manager: This feature is included so as to know the percentage of

time the QM is actually busy. If the QM’s utilization is high, the administrator should be

able to control the number of new queries being issued (by blocking or by sending a

message to the system integrator). The system administrator can also take a decision of

initiating new Headhunters and or QMs, if necessary.

Utilization of Headhunter: This feature is is an indication of the busy nature of a

particular Headhunter. If a Headhunter is idle for a long time, then there is a greater

possibility that the Headhunter is under performing, or no query is being propagated to

that particular Headhunter. In such as case, the system administrator can take a decision

 28

of terminating that particular Headhunter. On the other side, if a Headhunter’s utilization

is high for a long period of time, the system administrator can take other corrective

action, such as initiating another Headhunter on the same remote/local machine.

Stop Entities: The system administrator is provided with an option of terminating entities

in the URDS. This decision could be made if few hardware resources are available. This

feature is mainly highlighted when a particular Headhunter’s utilization is low for a

prolonged period of time or that Headhunter’s services are no longer required. The same

scenario can be applied to a Active Registry also. The terminating of the Domain

Security Manager and Query Manager comes in to the picture if multiple URDS are

deployed and this monitoring system is used to control all of them together.

Error Monitor: The feature is helpful in catching exceptions and displaying them to the

system administrator. These messages assist the administrator in taking some corrective

decision if necessary. Additionally, error help is also provided which assists the system

administrator.

3.6.2 System Integrator View

The System Integrator View provides a GUI for the user to submit queries and view the

results. The following features are provided in this view and their importance is

indicated.

Submit Query: This feature allows the system integrator to submit queries for the search

of components. While submitting the queries for processing, the system integrator is

given an option of entering the response time, also, within which the results should be

retrieved. Each query is associated with a unique query id, with which the system

integrator can retrieve results.

View Results: Once the query has been processed, the results can be viewed by

submitting the query id. The result for each query consists of the number of components

 29

matched, the time taken for processing the query (response time), a list of component

names and the ids associated to each component. Along with these details, a feedback

[DEV05] for each component is also displayed, which helps in selecting best matched

components.

Help: A navigational help is provided in the URDSMMS (for both the views), which aids

a user/administrator in better navigation, and it also in understanding how to use the

different features of the system. Help for errors are also provided in the system

administrator view.

This chapter provided an overview of monitoring systems and associated challenges in

creating them for a distributed computing environment. The chapter described different

features that are considered in the design of the URDSMMS. The next chapter discusses

about the design and implementation details of the URDSMMS.

 30

4. DESIGN AND IMPLEMENTATION OF URDSMMS

The chapter 3 provided an explanation of monitoring systems in a distributed computing

system and an explanation of different features for monitoring in URDSMMS. This

chapter discusses the URDSMMS architecture in detail, focusing on its high-level design,

the algorithms and the implementation details of the mentioned features of URDSMMS.

Figure 4.1 illustrates the constituents of the URDSMMS and their interactions with the

different entities in URDS.

System
Administrator

System
Integrator

A
U

TH
EN

TI
C

A
TI

O
N

Data
base

URDS
Manager

Stop
Entity

Message
Traffic

Monitor

Utilization
Monitor

Query
Handler

Snapshot
Monitor

URDSMMS

URDS

DSM

HH

HH

AR

AR

QM

System
Integrator

Proxy

get utilization

get utilization

submit query

get results

manage all
entities of URDS

get message traffic from
all components of URDS

get monitoring details from
all components of URDS

Start
Entity

C
O

N
TR

O
LL

ER

Error
Monitor

error monitoring URDS

The above architecture is shown with two types of users for URDSMMS, thus leading to

two views (described in the previous chapter), called the system administrator view and

the system integrator. URDSMMS architecture allows a comprehensive set of features to

the administrator, thereby allowing him to monitor and manage all the activities of the

URDS. The system integrator is provided with a few restricted features (because of the

Figure 4.1: URDS Monitoring and Management System Architecture

 31

security reasons), allowing him to submit a query and retrieve the results. A necessary

secure login is provided to distinguish between the system administrator and the system

integrator. In order to determine the specific constituents under each view, the URDS has

to be looked in terms of state diagrams.

The state diagrams [ARL2002, OES99] of the constituent elements of URDS depict the

various state changes of each element of the URDS. The event, triggers the transition

between these states (state changes). This analysis provides an insight into the interval

and the set of events to be recorded by the URDSMMS. Appendix A shows the state

diagrams for each entity of the URDS system.

4.1 Constituents of the URDSMMS

The features of monitoring systems which were mentioned in chapter 3 can be grouped

into different categories, namely: i) Controller ii) URDS Manager, iii) Message Traffic

Monitor, iv) Utilization Monitor, v) Snapshot Monitor, vi) Error Monitor, and vii) Query

Handler. The grouping is based on the functionality of each constituent and on the

separation of concerns. The following subsections discuss the design details of each of

these constituents and their interactions with URDS and other constituents of the

URDSMMS.

4.1.1 Controller

The Controller acts as a gateway between users (System Administrator/System

Integrator) and the URDSMMS. Depending upon the requested service by the users, the

controller redirects the request to the appropriate component of URDSMMS.

Algorithm for CONTROLLER initialization: In this algorithm the CONTROLLER

initializes all the services, i.e., the URDS MANAGER, MESSAGE TRAFFIC MONITOR,

UTILIZATION MONITOR, SNAPSHOT MONITOR, ERROR MONITOR and QUERY

PROCESSOR by calling their initialization methods.

 32

CONTROLLER_INITIALIZATION

BEGIN

CALL URDS_MANAGER_INITIALIZATION

 CALL MSG_TRAFFIC_MONITOR_INITIALIZATION

 CALL UTIL_MONITOR_INITILIZATION

 CALL SNAPSHOT_MONITOR_INITILIZATION

 CALL ERROR_MONITOR_INITILIZATION

 CALL QUERY_HANDLER_INITILIZATION

END

4.1.2 URDS Manager

The URDS Manager is responsible for all the management activities such as initiating

and terminating the entities of URDS (DSM, HH, AR, and QM). Depending upon a

successful/unsuccessful creation or termination an appropriate message is displayed with

the help of the Controller.

Algorithm for URDS Manager initialization: This algorithm outlines the process of

URDS Manager activating the START_ENTITY_SERVICE and

STOP_ENTITY_SERVICE.

URDS_MANAGER_INITIALIZATION

BEGIN

 ACTIVATE START_ENTITY_SERVICE

 ACTIVATE STOP_ENTITY_SERVICE

END

Algorithm for initiating an entity: This algorithm outlines the process of creating new

instances of URDS entities. Depending upon the system administrator’s request, the

appropriate service is invoked. In the below algorithm, entityType refers to the type of

 33

entity (DSM, HH, AR or QM). status is a boolean flag for displaying appropriate

(successful/unsuccessful) message on the interface, Attributes is a set of parameters and

these parameters depend upon the type of entity that is being initiated.

START_ENTITY_SERVICE

BEGIN

 IN: entityType, Attributes

 IF entityType is DSM

 status = CALL DSM_START_SERVICE (entityType, Attributes)

 END IF

 ELSE IF entityType is HH

 status = CALL HH_START_ SERVICE (entityType, Attributes)

 END ELSE IF

 ELSE IF entityType is AR

 status = CALL AR_START_ SERVICE (entityType, Attributes)

 END ELSE IF

 ELSE IF entityType is QM

 status = CALL QM_START_ SERVICE (entityType, Attributes)

 END ELSE IF

 ELSE

 // set flag to false value

 SET status to FALSE

 END ELSE

 // to display successful/unsuccessful message on the interface

 DISPLAY status

END

For all the routines invoked in START_ENTITY_SERVICE, a generic algorithm is

presented with different set of parameters for each type of entity. In the below algorithm

status_flag, is a boolean flag which denotes a successful initiation or a failure. Location is

passed as Attributes for the DSM. The Attributes for HH include Location, dsmLocation,

 34

hhName, hhPwd and Domain. Location, dsmLocation, arName, arPwd and, Domain

comprise the Attributes for the AR; and Location, dsmLocation, qmName and qmPwd

denote the Attributes for the QM. DEPLOY, this command deploys that particular entity

(DSM, HH, AR or QM) on the remote host.

GENERIC_ALGORITHM_START_ENTITIES

BEGIN

 IN: entityType, Attributes

 OUT: status_flag (success/failure)

 // instantiate entity on the remote host which returns a true or a false flag

 status_flag = DEPLOY entityType on remote host

 IF status_flag is TRUE

 // stores the location where entity is hosted in database

 INSERT entityLocation

 // starts an thread if entity is a HH or a QM

 IF entityType is HH or QM

 START UTIL_SERVICE

 END IF

 // starts an error monitor thread for that particular entity

 START ERROR_MONITOR_SERVICE

 END IF

// to return flag value to START_ENTITY_SERVICE

 return status_flag

END

Algorithm for terminating an entity: This algorithm outlines the process for terminating

an existing entity of the URDS. The system administrator contacts the URDSMMS for

terminating a particular entity. It then lookups the entity and issues a TERMINATE

command, this returns a true flag upon a successful termination else a false value. If the

flag value is true it removes the entry from the database and if the entityType is HH, AR

 35

or QM, the DSM is notified of the appropriate change. In the below algorithm,

entityLocation represents the location where the entity is running.

STOP_ENTITY_SERVICE

BEGIN

 IN: entityType (DSM, HH, AR, or QM), entityLocation

 OUT: status_flag (success/failure)

 IF entityType is DSM

 // obtain handle to DSM

 dsmLocation = LOOKUP entityLocation

 // terminate DSM which returns a true or false flag

 status_flag = TERMINATE DSM

 IF status_flag is TRUE

 // removes the entry from the database

 DELETE dsmLocation

 END IF

END IF

 ELSE IF entityType is HH

 // obtain handle to HH

 hhLocation = LOOKUP enitityLocation

 // terminate HH which returns a true or false flag

 status_flag = TERMINATE HH

IF status_flag is TRUE

 // remove the corresponding hhLocation from the DSM’s HHs List

NOTIFY DSM

 // removes the entry from the database

 DELETE hhLocation

 END IF

END ELSE IF

 ELSE IF entityType is AR

 // obtain handle to AR

 36

 arLocation = LOOKUP enitityLocation

 // terminate AR which returns a true or false flag

 status_flag = TERMINATE AR

IF status_flag is TRUE

 // remove the corresponding arLocation from the DSM’s AR’s List

NOTIFY DSM

 // removes the entry from the database

 DELETE arLocation

 END IF

 END ELSE IF

 ELSE IF entityType is QM

 // obtain handle to QM

 qmLocation = LOOKUP enitityLocation

 // terminate QM which returns a true or false flag

 status_flag = TERMINATE QM

IF status_flag is TRUE

// remove the corresponding qmLocation from the DSM’s entry

 NOTIFY DSM

 // removes the entry from the database

 DELETE qmLocation

 END IF

END ELSE IF

ELSE

 // set flag to false value

 SET status_flag to FALSE

 END ELSE

// to display on the on the interface about a successful/unsuccessful termination

return status_flag

END

 37

4.1.3 Message Traffic Monitor

The Message Traffic Monitor keeps track of the message traffic information in the

URDS. The traffic monitor uses an event-driven approach to update its traffic

information this information is updated on the web interface upon the request. This

information is classified into three types, namely, authentication messages, query

processing messages and components update messages. These messages are recorded by

software probes [MAN95] when an inter-entity message transfer occurs in the URDS.

The software probes are small pieces of code residing within the programs (entities of the

URDS) which raise events. These recorded events are responsible for sending messages

to the Message Traffic Monitor. The traffic monitor in-turn updates its message traffic

value(s) depending upon the type of messages (based on the type of event). When the

system administrator requests for traffic information the traffic monitor displays

information in three categories (authentication, query processing and components update

messages).

Algorithms for Handling the Message Traffic: These algorithms outline the process of

maintaining the message traffic information. Whenever there is new message, it updates

the appropriate counter.

MSG_TRAFFIC_MONITOR_INITIALIZATION

BEGIN

 ACTIVATE MSG_TRAFFIC_SERVICE

END

MSG_TRAFFIC_SERVICE

BEGIN

 WHILE TRUE

/* listens to all URDS (DSM, HH, AR & QM) entities for any message

communication, this is achieved by using software probes */

COLLECT trafficInfo

 38

IF newMessage

/* update the authentication / query / components update counter

depending upon the type of message */

UPDATE authentication/queryPropagation/Component counter

END IF

/* system administrator requests URDSMMS for message traffic

information */

IF contacted by SystemAdministrator

 // retrieves the traffic information

GET trafficInfo

/* display the traffic information on system administrator’s

interface */

 DISPLAY trafficInfo

END IF

 END WHILE

END

4.1.4 Utilization Monitor

The Utilization Monitor helps in providing the utilization of the active Headhunters or the

Query Manager. As soon as a HH or QM is started, the Utilization Monitor starts

recording its net busy time (time during which a HH or QM is executing any of its

methods). It records the busy time at a regular time intervals, so that a history of values

could be provided to the system administrator upon a request.

Algorithm for Initialization of Utilization Monitor: In this algorithm, the utilization

monitor activates the HH_UTIL_SERVICE and QM_UTIL_SERVICE. These algorithms

record the utilization of each HH or QM at a regular time interval of 60 seconds

(randomly selected).

 39

UTIL_MONITOR_INITIALIZATION

BEGIN

 ACTIVATE HH_UTIL _SERVICE

 ACTIVATE QM_UTIL _SERVICE

END

Algorithm for Handling Headhunter’s Utilization: This algorithm outlines the process of

calculating the utilization percentage for each Headhunter and also generates a utilization

graph. netBusyTime is the net time for the HH to process a query or update its

metarepository. The utilization percentage is the net busy time divided by the total time

interval for recording the busy time (in this case 60 seconds); precisely

netUtilizationPercentage = (netBusyTime/60)*100 (same formula is used for calculating

utilization of QM).

HH_UTIL_ SERVICE

BEGIN

 IN: hhLocation

 WHILE TRUE

 // obtain a handle to the HH to record its utilization

 LOOKUP hhLocation

 // obtains the HH’s net utilization time, in a particular time interval

 GET netBusyTime

 // calculates the utilization percentage, using the above mentioned formula

 COMPUTE netUtilizationPercentage = (netBusyTime/60)*100

/* stores the computed utilization values in an ArrayList which

corresponds to this particular HH */

 STORE value in HHUtilList

/* system administrator requests URDSMMS for a particular HH’s

utilization information */

IF contacted by user

 // retrieves the latest set of utilization percentage values

 40

GET HHUtilList

/* generate a dynamic graph which shows the utilization

percentage of HH over a period of time */

 DRAW HHUtilGraph

 // displays the graph on the system administrator’s interface

DISPLAY HHUtilGraph

END IF

 END WHILE

END

Algorithm for Handling Query Manager’s Utilization: This algorithm outlines the

process of calculating the utilization percentage for QM and also generates a utilization

graph. netBusyTime is the time for a QM to check its queue (query input queue),

propagate queries to HHs and receive results from HHs.

QM_UTIL_ SERVICE

BEGIN

 IN: qmLocation

 WHILE TRUE

 // obtain a handle to the QM to record its utilization

 LOOKUP qmLocation

 // obtains the QM’s net utilization time, in a particular time interval

 GET netBusyTime

 // calculates the utilization percentage

 COMPUTE netUtilizationPercentage = (netBusyTime/60)*100

// stores the computed utilization values in an ArrayList

STORE value in QMUtilList

/* system administrator requests URDSMMS for a particular QM’s

utilization information */

IF contacted by user

 // retrieves the latest set of utilization percentage values

 41

GET QMUtilList

/* generate a dynamic graph which shows the utilization

percentage of QM over a period of time */

DRAW QMUtilGraph

 // displays the graph on the system administrator’s interface

DISPLAY QMUtilGraph

END IF

 END WHILE

END

4.1.5 Snapshot Monitor

The Snapshot Monitor keeps track on the number of active entities in the URDS and the

number of queries the URDS is processing. Whenever a new entity is started, the

Snapshot Monitor updates its values. The Snapshot Monitor retrieves the information

from the database using a JDBC connection upon the administrator’s request. It then

propagates the information to the Controller, which in-turn updates the values on the

interface of system administrator.

Algorithms for Handling the Snapshot of URDS: These algorithms outline the process of

obtaining the snapshot of the URDS. Depending upon system administrator’s request,

details about the HHs and ARs can also be provided, along with the URDS statistics.

enityType refers to a HH or a AR

SNAPSHOT_MONITOR_INITIALIZATION

BEGIN

 ACTIVATE SNAPSHOT_SERVICE

END

SNAPSHOT_SERVICE

BEGIN

 42

/* system administrator requests URDSMMS for a snapshot of URDS */

IF contacted by user

/* retrieves from database details of HH’s, AR’s and the locations of DSM

and QM */

GET details from database

// displays details from database

DISPLAY snapshot of URDS

// system administrator requests display of specific details of HHs or ARs

IF requested by user for entityType details

/* retrieves the entity (HH or AR) details from database, such as

location, name, domain and rating */

GET entityType_details from database

 // display entity details

 DISPLAY entityType_details

 END IF

END IF

END

4.1.6 Error Monitor

The Error Monitor provides the error handling part for the URDSMMS. It is responsible

for catching the remote exceptions which can occur at any entity of URDS. Exceptions,

such as failure of authentication, Headhunter not found, unable to connect, etc., are

displayed. When the Error Monitor receives an error message from URDS, it

immediately dispatches the message to Controller which displays the message on the

interface of the system administrator. Additionally, an error help is provided

corresponding to each error message. The Error Monitor also uses an event-driven

approach by using software probes (as described in section 4.1.3), and its values are

updated on the interface at regular time intervals.

 43

Algorithms for Handling the Errors of URDS: These algorithms outline the process of

catching the exceptions thrown by URDS entities and notifying the system administrator

with a relevant error message.

ERROR_MONITOR_INITIALIZATION

 ACTIVATE ERROR_MONITOR_SERVCE

END

ERROR_MONITOR_SERVICE

BEGIN

 IN: entityLocation (DSM’s, HH’s, AR’s or QM’s location)

 WHILE TRUE

/* listens to all URDS (DSM, HH, AR & QM) entities for any remote

exceptions by using software probes */

COLLECT errors

IF errors

 /* displays an error message to the system administrator */

DISPLAY errorMessage

END IF

 END WHILE

END

4.1.7 Query Handler

The Query Handler is responsible for propagating the queries submitted by the system

integrator. If a new query is submitted, Query Handler delivers it to QM for processing.

The results are retrieved and displayed to the system integrator.

Algorithms for Initialization Query Handler: In this algorithm query handler activates the

NEWQUERY_HANDLER and RESULTS_HANDLER.

 44

QUERY_HANDLER_INITIALIZATION

BEGIN

 ACTIVATE NEWQUERY_HANDLER

 ACTIVATE RESULTS_HANDLER

END

Algorithms for Handling Queries: These algorithms outline the process of submitting a

new query for processing to QM and retrieving results using the RESULTS_HANDLER

algorithm and displaying them to the system integrator. The queryID is a unique id

generated by the monitoring and management system.

NEWQUERY_HANDLER

BEGIN

 IN: componentName, responseTime

 // system integrator searches for matching components

 LOOKUP URDS_Proxy

 // obtain a handle to URDS_Proxy to submit a query

 SUBMIT query

END

RESULTS_HANDLER

BEGIN

 IN: queryID

 // system integrator retrieves results for a particular by submitting the queryID

 GET results from database

 DISPLAY results

END

The implementation details for the above mentioned algorithms are provided in

subsection 4.4.

 45

4.2 User Interface Design

A good interface is necessary for producing successful software products; it helps in

providing better usability for the systems. This section presents the basis for the

importance of usability and how usability issues have been tackled in URDSMMS.

“Interface design became important because pleasant, attractive, easy-to-use software

sells well.” [SUT95]. Usability helps in making the system easy-to-learn and easy-to-use.

It describes the quality of a user’s (in the present case, either an administrator‘s or a

system integrator’s) experience when interacting with a system.

The usability and features of the system were amended by going through a series of steps.

Initially the requirements of the target users were identified and these requirements were

reviewed and enhanced by having multiple meetings with the UniFrame team members.

Also a survey was prepared on the basis of [PRE02]; and was distributed among the

UniFrame team to collect their ideas about the interface design and the feature that should

be incorporated. Based on the feedback obtained from the survey and the one-to-one

meetings, the URDSMMS features such as utilization of HH or QM and average response

time were revised and incorporated. The actual copy of the survey and its results are

provided in Appendix D.

4.2.1 Use Case Diagrams

The Use Case diagrams model the functionality of the system using actors and use cases.

[ARL2002, OES99]. A use case diagram displays the relationship among actor(s) and use

cases. The roles played by users that use the system are called actors. Use cases are the

actions that an actor can do with the system.

In this subsection, a few use-case diagrams are presented, along with the pre-condition

and post-condition of the system, and a brief description about each use case. For

 46

URDSMMS, only two actors (system administrator and system integrator) are

considered. Appendix B provides the rest of the use-case diagrams.

Figure 4.2 illustrates a successful/unsuccessful login by a user to access the URDSMMS.

The use case starts when the system administrator/system integrator enters the URL. If

the correct username and password is entered, the system authenticates the user and

redirects to the appropriate interface; else the system displayed an error message and ask

to re-enter the username and password.

Login

Pre: System Administrator/System Integrator has
accessed the website by entering the URL.

Post: User has got access to the URDSMMS main page
upon a successful login; else an error message has been
displayed.

System
Administrator/

System Integrator

Figure 4.2 Use Case Diagram for a successful/unsuccessful login

Figure 4.3 illustrates a use case diagram for starting an entity of URDS. The system

administrator is asked to enter the details (depending upon the entity, information such as

host name, port number, DSM location, domain, username and password). After checking

the appropriateness of the details, a new entity is created and a corresponding status

message is displayed. Depending upon the appropriateness, the message can be either a

“successful creation” or “error in creation”.

 47

Start Entity

Pre: System Administrator has accessed the StartEntity (DSM,
HH, AR or QM) page, by clicking on the appropriate menu.

Post: System Administrator has got a message saying entity
successfully started or error in starting entity.

System
Administrator

Figure 4.3 Use Case Diagram for starting an entity

4.3. Implementation of the URDSMMS

The following sections describe a prototypical implementation of the URDSMMS

architecture using Java and Java-based technologies.

4.3.1 Technology

Before the description of the actual implementation, the technologies that are used for the

prototype are briefly described.

4.3.1.1 JavaTM 2 Platform Enterprise Edition (J2EETM)

The prototype implementation is based on the architectural model laid out by [SUN01] in

J2EETM. J2EETM defines a standard that applies to all aspects of architecting, developing

and deploying multi-tier server-based applications. The Figure 4.4 [SUN01a] shows the

components of the J2EETM Model.

 48

The J2EETM platform specifies technologies to support multi-tier enterprise applications.

[SUN01] categorizes these technologies into three, namely, Component, Services and

Communication. The following subsections outline the technologies (in Figure 5.1) in

each of these categories that have been used for implementation. (The Java-based

technologies described in these sections are proprietary technologies of SUN

Microsystems [SUN01])

4.3.1.1.1 Component Technologies

The J2EETM Component technologies have been used in the prototype to create the front-

end client components and back-end service components. The prototype supports two

types of clients: Application Clients which are structured as Application Client

Components (described in section 4.3.1.1.1.1) and Web Clients, which interact with the

Web Components (described in section 4.3.1.1.1.2). These two types of J2EETM

components used in the prototype are discussed below:

Figure 4.4 Components and Containers of J2EE Model. [SUN01a]

 49

4.3.1.1.1.1 Application Client Components

Application Clients are client components that execute in their own Java virtual machine.

Application clients are hosted in an Application Client Container (Figure 5.1).

4.3.1.1.1.2 Web Components

A Web Component is a software entity that provides the necessary response to a request.

The J2EE TM platform contains two types of Web Components, namely, Servlets and Java

Server Pages TM (JSP).

Servlets are Java programming language classes that dynamically process requests and

construct responses. JSP pages are text-based documents that execute as servlets but

allow a more generic approach in creating web pages. JSP technology provides an

extensible way of generating dynamic content for a Web client.

4.3.1.1.2 Service Technologies

The J2EETM platform [SUN02] service technologies allow applications to access variety

of services. The popular service technologies supported are JDBCTM API [SUN03a]

which provides access to databases, Java Transaction API (JTA) [SUN03b] for

transaction processing, Java Naming and Directory InterfaceTM (JNDI) [SUN03c] which

provides access to naming and directory services, J2EETM Connector Architecture

[SUN03d] which supports access to enterprise information systems and Java API for

XML Processing (JAXP) [SUN03e] which enables applications to parse and transform

XML documents independent of a particular XML processing implementation. The

JDBCTM API 2.0 service technology is used in this prototype; a discussion of it is given

below.

 50

4.3.1.1.2.1 JDBCTM API 2.0

The JDBCTM API provides methods to invoke SQL commands from Java programming

language methods. The JDBC API has two parts: an application-level interface used by

the application components to access a database, and a service provider interface to attach

a JDBC driver to the J2EETM platform.

4.3.1.1.3 Communication Technologies

Communication technologies provide a mechanism for communication between clients

and serves and between the collaborating objects hosted by different servers. Some of the

communication technologies supported by the J2EETM platform include, Transport

Control Protocol over Internet Protocol (TCP/IP), Hypertext Transfer Protocol HTTP 1.0,

Secure Socket Layer SSL 3.0, Java Remote Method Protocol (JRMP), Java IDL, Remote

Method Invocation over Internet Inter ORB Protocol (RMI-IIOP), Java Message Service

1.0 (JMS), JavaMail and Java Activation Framework. The current prototype uses the

HTTP 1.0 Protocol for communication between the browser-based clients (system

administrator and system integrator) and the server-side entities. The components

communicate among themselves on the server-side using Java Remote Method

Invocation (RMI). The following subsection provides an overview of communication

technologies used in this prototype.

4.3.1.1.3.1 HTTP 1.0 Protocol

The Hypertext Transfer Protocol (HTTP) [WWW03] is an application-level protocol for

distributed, collaborative, hypermedia information systems (used by the World Wide

Web). It is a generic stateless protocol, featuring the typing and negotiation of data

representation, allowing systems to be built independently of the data being transferred.

 51

4.3.1.1.3.2 Java Remote Method Invocation (RMI)

Java RMI [SUN03f] is a set of API in Java that enables programmers to develop

distributed applications. It uses Java language interfaces to define remote objects, and it

combines Java serialization technology and the Java Remote Method Protocol (JRMP)

for performing remote method invocations.

4.3.1.2 Web Servers and Application Servers

A Web Server consists of hardware and software programs, which serve the requested

HTML pages or files (such as images, documents, etc) to the remote clients via web-

browsers. Web servers are assigned IP addresses which remote applications can use to

access them with the HTTP protocol. Apache HTTP Server [APA04], IBM HTTP Server

[IBMa] and Sun Java System web server [SUN] are some of the popular examples of web

servers.

Application Servers are software components that provide the business logic for an

application program. They coordinate with web servers to return specific results

(dynamic results) to a client’s request. The clients communicate with the web servers

using HTTP protocol and they in-turn communicate with the application servers to

retrieve dynamic content, the web server return this information back to the clients using

HTTP protocol. The application servers communicate with back-end database

systems/directory servers using standard communication protocols. Some examples of

application servers are IBM WebSphere Application Server [IBMb], BEA’s WebLogic

Server [BEA] and Internet Information Services (IIS) [IIS].

4.4 URDSMMS Implementation

Figure 4.5 illustrates the implementation of URDSMMS. The architecture, along with the

existing URDS, is a multi-tier implementation of a distributed application model, which

 52

implies that various parts of the system can run on different remote machines. This

architecture is complaint with the J2EETM distributed application model.

System
Administrator

View

System
Integrator

View

Web Server

Database

DSM

QM

URDSMMS URDS

Headhunters

HH

HH

System
Generator

Active
Registry

AR

URDS Manager

Start Entity

Stop Entity

AR

Message
Traffic
Monitor

Query
Handler

newQuery.jsp

Results.jsp

http

RMI

Utilization
Monitor

URDSMMS
Proxy

HHStart.jsp

DSMStart.jsp

MsgTraffic.jsp

HHUtilization.jsp
QMUtilization.jsp

Snapshot
Monitor

Monitor.jsp

http

http

http

http

RMI

RMI

RMI

RMI

JDBC

JDBC

JDBC

Web Tier Business Tier Client Tier
Database

Tier

View Controller Model

http

errorsDisplay.jsp
Error

Monitor

http

The URDSMMS functionality is partitioned into modules, with each module divided into

specific objects, each having a separate functionality. The prototype adopts the Model-

View-Controller (MVC) architecture [GAM95, SUN02a]. The MVC architecture can be

described as follows: “The Model represents the application data and the rules that

govern the access and modification of this data. The View renders the contents of a

model. It accesses data from the model and defines how that data should be presented.

The Controller defines the application behavior; it translates user gestures into actions to

be performed by the model” [GAM95].

The Model consists of the Business and Database tiers. It includes the underlying URDS

system implemented in [SIR03]. The Business tier, which consists of different entities of

Figure 4.5 URDSMMS Implementation

 53

URDS, has been modified, so as to support the monitoring features of URDSMMS. The

Oracle database tier includes the relational database tables of URDS and URDSMMS.

The View consists of browsers, which provide interfaces for the users (system

administrator and system integrator) of URDSMMS. These users interact with the system

and together form the client tier of URDSMMS.

The Controller of URDSMMS consists of JSP pages and proxy classes. The proxy

classes are responsible for arbitrating between the JSP pages and entities of URDS in the

Business tier. The JSP pages receive inputs forms the users (administrator and integrator)

of the Client tier and send back the processed results via browsers.

4.4.1 Platform and Environment

In the prototype, the components of URDSMMS are implemented using JavaTM 2

Platform, Standard Edition (J2SE) [SUN03] version 1.4.1 software environment. The

core entities are implemented as Java-RMI based services. The database oriented

implementations are based on Oracle version 9.2. The web-based components (JSPs),

which service client (system administrator and system integrator) interactions, are housed

in the Tomcat 3.1.1 Servlet/JSP Container [APA03].

4.4.2 Communication Infrastructure

The interactions between the users (system administrator or system integrator) and the

components in the Web tier are established using HTTP protocol. The communication

between proxy classes in the Web tier and the URDS entities of the Business tier are

based on Java RMI. The connections to the databases are established using the JDBC

APIs.

 54

4.4.3 Implementation Details

To structure an application along the lines of MVC architecture it is necessary to divide

the application into objects and assign these objects to different tiers. This process is

referred to as object decomposition. These are objects that deal with presentation aspects

of the application, objects that deal with the application rules and data, and objects that

accept and interpret user requests and control the application objects to fulfill these

request [SUN01a].

The URDSMMS, when combined with the URDS, forms a four-tier architecture. The

description in this section is presented in the following order: Client Tier, Web Tier,

Business Tier and Database Tier.

4.4.3.1 Client Tier

The client tier consists of the users (system administrator and system integrator) of the

URDSMMS. This client tier forms the view of the MVC architecture. It determines the

presentation of the user interface of the prototype. The JSP pages work along with the

components of URDSMMS and URDS. The JSP pages are used for dynamic generation

of HTML responses.

As indicated earlier, this prototype considers two kinds of users, and hence, two views

have been implemented, the system administrator view and system integrator view. Both

the users login into the system securely by entering the username and password in the

main.jsp page. A description about the JSP pages which present views to both the user

are presented in section 4.4.3.2.1.

The Figure 4.6 illustrates the login page (main.jsp) of the URDSMMS, it serves as a

common login page for both kinds of users.

 55

Figure 4.6 main.jsp view

4.4.3.2 Web Tier

The Web tier forms the controller module of the MVC architecture. It is responsible for

coordinating the model and view. The Web Tier in the URDSMMS also consists of

several proxy classes, which help the connection between Web Components in this tier

and Business Components in the Business Tier.

4.4.3.2.1 Web Components

The Web Components consist of JSP pages, which interact with the proxy classes and

return the results to the users.

main.jsp: This JSP page provides the login view for accessing the system. A user (system

administrator/system integrator) enters the username and password to login into the

URDSMMS system. If it is a successful login, the user is redirected to an authorized page

 56

(depending on system administrator view or system integrator view), else an error

message is displayed.

DSMStart.jsp: This JSP page provides the view for initializing (starting) the

DomainSecurityManager (DSM). The DSM can be hosted on any remote host.

HHStart.jsp: This JSP page provides the view for initializing (starting) a Headhunter

(HH). The HH can be hosted on any desired remote host, by providing the necessary

username, password and domain name, along with the DSM’s location.

ARStart.jsp: This JSP page provides the view for initializing (starting) a ActiveRegistry

(AR). The AR can be hosted on any desired remote host, by providing the necessary

username, password and domain name, along with the DSM’s location.

QMStart.jsp: This JSP page provides the view for initializing (starting) a QueryManager

(QM). The QM can be hosted on any desired remote host, by providing the necessary

username and password, along with the DSM’s location.

Monitor.jsp: This JSP page provides the view for displaying the statistical details of the

URDS, such as location where the DSM, QM, HHs and ARs are running. An option to

display details specific to each HH and AR (such as HH’s or AR’s name, domain, along

with a feedback for each HH) is also provided. Number of queries the system is currently

executed is also displayed.

getTraffic.jsp: This JSP page provides the view to display the message traffic, upon the

request from the user. The message traffic is displayed in three categories, namely,

authentication, query processing and component messages it gathers information from the

MsgTraffic class.

 57

graphViewer.jsp: This JSP page provides the view to display the response times for

executed queries. The details are shown graphically, for the latest 20 queries, so as to

provide better understanding of the system.

HHUtilization.jsp: This JSP page provides the graphical view of the utilization of a

Headhunter. A graph of the latest 100 values can be plotted by selecting the HH for

which the graph is required. This information is obtained form the Monitor class.

QMUtilization.jsp: This JSP page provides the graphical view of the utilization of the

Query Manager. A graph of the latest 100 values can be plotted upon the user’s request.

This information is obtained form the Monitor class.

DSMStop.jsp: This JSP page provides the view for killing a Domain Security Manager.

This process can be achieved by submitting the location of the DSM to the Monitor class.

QMStop.jsp: This JSP page provides the view for killing a Query Manager. This process

can be achieved by submitting the location of the QM to the Monitor class.

HHStop.jsp: This JSP page provides the view for killing a Headhunter. This process can

be achieved by submitting the location of the HH to the Monitor class.

ARStop.jsp: This JSP page provides the view for killing a Active Registry. This process

can be achieved by submitting the location of the AR to the Monitor class.

Help.htm: This HTML page provides a navigational help for the administrator view of

the entire system and also provides help for the known error messages.

errorsDisplay.jsp: This JSP page serves as a view for displaying all the error messages

that occur in the URDS.

 58

newQuery.jsp: This JSP page serves as a view for submitting a query for processing to

the URDSProxy class.

displayResults.jsp: This JSP page is to view the processed results. The results can be

viewed by submitting queryid.

Help_si.htm: This HTML page provides a navigational help for the system integrator

view.

The newQuery.jsp and displayResults.jsp pages provide interfaces for the system

integrator view while the rest of the JSP pages serve as interfaces for the system

administrator view. The screen shots for these views are provided in appendix C.

4.4.3.2.2 URDSMMS Classes

These classes serve as connectors between the Web tier and Business tier. These Java

classes collect monitoring information from different entities of URDS. The functionality

of these classes of URDSMMS can be described as below and the class diagrams are

provided in appendix E.

URDS Management: This connects the DSMStart.jsp, HHStart.jsp, HHStop.jsp, etc.

(other JSP pages which fall-in the management activity of URDSMMS) in the Web tier

with the URDS entities (DSM, HH, AR &QM) in Business tier.

Message Traffic Monitor: This class connects getTraffic.jsp in the Web tier with all

URDS entities (DSM, HH, AR and QM) in Business tier. It records the traffic

information by placing probes in the URDS entities called software probes [MAN95].

Utilization Monitor: This class connects HHUtlization.jsp and QMUtilization.jsp in Web

tier to HHs and QM in the Business tier. It records the net utilization of HHs and QM at

regular time intervals.

 59

Snapshot Monitor: This class connects Monitor.jsp in Web tier to entities in URDS

(DSM, HH, AR &QM) and, inturn, connects to the database to collect the statistical

details.

Query Handler: This class connects newQuery.jsp (accepts queries) and

displayResults.jsp in Web tier to System Generator in the Business tier.

4.4.3.3 Business Tier

The Business tier consists of business components, which forms a part of Model in the

MVC architecture. Business Components here refer to standalone software entities that

provide services to components in other tiers or in the same tier. These business

components can be remotely accessed using standalone communication protocols. The

business components in URDS consist of DSM, HH, AR and QM.

4.4.3.4 Database Tier

The Database tier is responsible for storing persistent data of URDSMMS and URDS.

The database is an Oracle database (version 9.2) which is a relational database. The

database is accessed and updated through the JDBC technology.

This chapter provided an overview of the URDSMMS architecture and an explanation

about each of its entities. The use-case diagrams for the design of UI and the

implementation details of URDSMMS are also discussed in this chapter. The next

chapter will discuss the experimentation of URDSMMS and the analysis of the results.

 60

 5. EXPERIMENTATION AND VALIDATION

The chapter 4 provided the design and implementation details of URDSMMS. This

chapter focuses on the experimental analysis and validation of the prototype created. The

usability of the user interface of the prototype is validated based on an informal survey.

5.1 Experimental Setup

The prototype was implemented using the JavaTM 2 Platform, Standard Editon (J2SE)

version 1.4.1 software environment. The core entities (URDS Management, Message

Traffic Monitor, Utilization Monitor, URDS Snapshot Monitor and Error Monitor) were

implemented using Java and Java-RMI technologies. The user interface was designed

using JSP; and deployed on Jakarta Tomcat version 3.1.1. The underlying URDS system

was adapted from [SIR02] and [DEV05]. The repository used by the Domain Security

Manager for authenticating other entities was implemented using Oracle9i database

version 9.2. URDSMMS also used the same database to store results. The hardware

platform used for the experimentation was Sun Solaris Ultra-250 Sparc machines, which

are running with Sun OS release 5.8. The prototype can be implemented on any

environment using J2SE 1.4.1, or later version, and running any web server which is

compatible with JSP technology.

5.2 Experiments to empirically validate the Monitoring System

URDSMMS was tested with different sets of experiments to empirically validate the

functioning of the monitoring system. All the experiments were conducted on the version

of URDS which has been implemented with the multi-threaded Query Manager and

single-threaded Headhunters [DEV05]. This version of URDS was capable of processing

multiple queries simultaneously.

 61

This set of experiments was carried out with one Headhunter (HH) and one Active

Registry, with the utilization of Headhunter and Query Manager being calculated at

regular time intervals. After a period of time, two queries were submitted to the system

for processing, to trace the appropriate changes in the utilization values. The reason for

considering such a small configuration is to clearly observe the change of pattern in the

graphs. Figure 5.1 illustrates the Snapshot of URDS; it depicts the number of active

entities of URDS.

In Figure 5.2, the vertical represents the utilization percentage of a Headhunter

(Headhunter’s active time) and the horizontal represents the latest calculations of the

utilization (history of values up to 100 are maintained). From the graph, the utilization of

a Headhunter is observed to be in the range of 0.8% and 1.5% when it is idle, i.e., no

queries are being sent to that Headhunter for processing. This small percentage of

utilization is accounted to the Headhunter’s multicasting and receiving the updated

component information from the Active Registry. The peak value of 7.0% utilization is

because the Headhunter receives two queries from the Query Manager for processing. If

Figure 5.1 Snapshot of URDS

 62

the query input pattern was continuous, then this peak value of utilization might have

been continued for a longer period (as long as the Headhunter keeps processing new

queries). Figure 5.2 shows the utilization of Headhunter for the above described scenario.

Figure 5.3, illustrates the utilization of the Query Manager. The vertical represents the

utilization percentage of the Query Manager and the horizontal represents the latest

calculations of the utilization (history of values up to 100 are maintained). The utilization

of the Query Manager is approximately 0.01% when it is idle (Query Manager is not

receiving any queries from the system integrators). This small percentage is accounted to

the Query Manager checking in its query queue (queue to store the incoming queries). A

peak value of 83% utilization is seen at a point when the Query Manager received two

queries from the system integrator for processing. In the case of continuous query input

pattern, the utilization value would have been a peak value for a longer period (as long as

Figure 5.2 Utilization of Headhunter

 63

the Query Manager keeps receiving new queries from system integrators), the value

depends upon the rate at which the queries are being supplied to it.

5.3 Experiments to Test Scalability

These set of experiments were carried out to observe the scalability of the prototype. The

prototype was tested with 20 Headhunters running across 20 Sun Ultra-250 Sparc

machines and 4 Active Registries running on 2 machines. The utilization of each

Headhunter and the Query Manager was recorded and displayed.

Table 5.1 shows the message traffic of URDS when 20 Headhunters are running and 4

Active Registries running. Since no new entities are initiated and no new queries are

being submitted the number of Authentication Messages and Query Processing Messages

are 0, respectively. The number of messages that account for Component Registration is

Figure 5.3 Utilization of Query Manager

 64

4; this is because of the Headhunter multicasting its location and the Active Registry

responding back with the updated components list.

Classification No. of Messages

Authentication Messages 0

Query Processing Messages 0

Component Registration 4

Figure 5.4 illustrates the snapshot of the URDS with 20 active Headhunters, 4 Active

Registries, and one Domain Security Manager and one Query Manager. By clicking on

the display details of the Headhunter or the Active Registry, the system integrator can

view the specific details of each Headhunter or Active Registry. This view helps to know

the statistical details about the entities of URDS and their distribution on different remote

hosts.

Table 5.1 Message Traffic of URDS

Figure 5.4 Snapshot of URDS (showing 20 HHs)

 65

5.4 Experiments to test the functionality of URDSMMS

The following experiments were carried out to test the features provided by the

URDSMMS. The URDSMMS features assist the system administrator in making

appropriate decisions to improve the performance of the URDS.

Experiment to reduce average response time by adding Headhunters: The goal of this

experiment is to show that, by adding new Headhunters to the URDS, average response

time reduces. To demonstrate this, a graph is plotted between average response time and

system time (time from which Query Manager starts receiving queries from system

integrator). Figure 5.5 illustrates a graph, comparing the response times for 4 series of

values, each set of values were recorded when the URDS was running with 2HHs, 4HHs,

6HHs and 8HHs respectively.

0

2000

4000

6000

8000

10000

12000

14000

16000

9.5
89

51
.52

9

92
.80

9

13
3.9

7

17
5.2

42

21
6.5

66

25
7.3

07

29
8.5

88

33
9.6

27

38
1.5

49

42
2.6

27

46
3.6

27

50
4.7

86

54
5.4

26

58
6.6

29

62
7.6

98

66
8.4

35

70
9.6

23

75
1.2

04

79
2.5

53

83
3.5

64

87
4.2

73

91
5.5

06

95
7.2

57

99
8.3

08

10
39

.35

10
79

.99

11
21

.63

11
62

.8

12
04

.01

12
44

.73

12
85

.91

Time (secs)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

8HH
6HH
4HH
2HH

Figure 5.5 Comparison of average response times for different sets of Headhunters

 66

All the 4 series values were recorded under similar condition, with queries being sent

from three system integrators at a rate of 1 query for every 2.5 seconds (these numbers

are chosen randomly to carry out the experiment). To measure the performance of the

system, the same query is issued repeatedly.

From the graph we can observe that initially the response time values are high (for a few

instances). One of the reasons for these initial peak values could be the time to access the

data structure (in this case it is a Hashtable). Since the same data structure is being

accessed multiple number of times (which increases the hit rate for that data structure),

the operating system stores the result in its cache, because of which for the further queries

the response time slowly reduces and reaches a constant state. An expanded version of

the same graph is shown in Figure 5.6. The decrease in the average response time is seen

because, by adding new Headhunters, more number of queries can be processed

simultaneously and thereby reducing the waiting time for each query (in Query

Manager’s query queue).

0

2000

4000

6000

8000

10000

12000

14000

16000

9.5
89

19
.91

9

30
.46

7

41
.01

7

51
.52

9

61
.40

6

71
.86

1

82
.33

5

92
.80

9

10
2.7

4

11
3.1

4

12
3.5

8

13
3.9

7

14
4.4

4

15
4.4

3

16
4.8

2

17
5.2

4
18

5.7
19

5.6

20
6.0

8

21
6.5

7

22
6.5

3

23
6.8

8

24
7.3

6

25
7.3

1

Time (secs)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

8HH
6HH
4HH
2HH

 Figure 5.6 Comparison of average response times for different sets of Headhunters
(enlarged version)

 67

Experiment to increase the throughput by adding Headhunters: The aim of this

experiment is to show that by adding new Headhunters to the URDS, a greater number of

queries can be processed within less time, thereby, increasing the throughput of URDS.

To illustrate this behavior a graph is plotted between time (time from which Query

Manager starts receiving queries) and number of queries processed.

Figure 5.7 illustrates such a graph, comparing the number of queries processed at certain

times. The graph shows 3 series of values, each set of values was recorded when the

URDS was running with 2HHs, 4HHs and 8HHs respectively.

0

200

400

600

800

1000

1200

1400

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

48
1

49
6

Number of Queries Processed

Ti
m

e
(s

ec
s)

8HH
4HH
2HH

From the graph it is observed that, as a greater number of Headhunters are added to the

URDS, the slope of the graph further reduces. This decrease in slope is expected to

happen until the point at which the query arrival rate is almost the same as the results are

Figure 5.7 Comparison of number of queries processed for different sets of Headhunters

 68

processed and returned back to the system developer, i.e., there will be no waiting queries

in the Query Manager’s query queue. At this saturation point the slope will not further

decrease by adding new HHs as there will be no waiting queries to process. The

observations made from the graph are as follows; at 200 seconds for a 2HHs scenario

only 76 queries were processed, where as in the 4HHs and 8HHs cases, 150 and 220

queries were processed respectively.

View showing the error handling feature of URDSMMS: Figure 5.8 illustrates a

screenshot of the URDSMMS when a Headhunter attempts to login with an incorrect

username/password. Static help messages for common (known) error messages help the

system administrator in taking the corrective actions to recover from the errors. In this

particular case the administrator is advised to re-instantiate that particular Headhunter.

View showing the submit query feature of URDSMMS: Figure 5.9 illustrates a screenshot

of the URDSMMS when a system integrator tries to submit a new query for processing.

The unique query id is automatically generated; the system integrator needs to enter the

Figure 5.8 View showing error handling feature

 69

component name (or domain name, the present example is illustrated for domain name)

and the response time for retrieving the results.

View showing the retrieve results feature of URDSMMS: Figure 5.10 illustrates a

screenshot of the URDSMMS, when a system integrator tries to retrieve results for a

particular query id. This view shows the details (such as number of components matched

and response time) of the submitted query and the details (such as component name,

component ID and its rating) for each component.

Figure 5.9 View showing the submit query feature

 70

The screen shots of other features of the URDSMMS with both system administrator and

system integrator views are provided in Appendix C.

The experiments in this subsection were performed to test the functionality of the

URDSMMS. From the sets of experiments, it can be observed that the features are

helpful in making managerial decisions to improve the throughput and average response

time of the URDS. The features also show the error handling capability of the

URDSMMS.

5.5 Usability testing of the interface

“Usability testing is a highly efficient method for measuring the quality of use and

acceptance of a product, and detecting issues” [VNE03]. The purpose of usability testing

is to ensure that the monitoring system will meet the needs of the target user group. In the

case of URDSMMS, the testing involved the observation of the users performing real

tasks with the URDSMMS, recording what they do, analyzing the results, and making

Figure 5.10 View showing the retrieve results feature

 71

appropriate changes. This subsection presents how some of the usability goals of

[PRE02] were tested and addressed in the URDSMMS.

After the system has been fully implemented, a survey was prepared on the basis of

[PRE02], to collect the user’s experiences. The UniFrame team members were requested

to use the URDSMMS and were asked to fill a survey, to collect their feedback about the

system.

The survey consisted of questions for obtaining suitable feedback about the effectiveness,

utility, learnability and memorability [PRE02] of the interface. More explanation about

these metrics, consequent questions and the results are included in Appendix D. The

survey also included questions aiming at measuring user experience goals [PRE02], such

as user’s satisfaction and degree of aesthetically pleasing. Some of the user suggestions

from the survey included redesigning the menu buttons and reducing header and footer

size. These suggestions were suitably incorporated, resulting in an aesthetically pleasing

user interface for the URDSMMS. Also, based on the suggestions made by the users,

appropriate help was provided for error messages.

This chapter discusses the experimental results and validation of the deployed monitoring

and management system. It provides different graphs and the analysis of those graphs,

validating the features of URDSMMS. In addition by using the survey, the usability of

the interface has been verified. The next chapter summarizes this report by presenting the

conclusions, possible future work and a summary of the report.

 72

6. CONCLUSION AND FUTURE WORK

This project report presented a framework and an implementation of a monitoring and

management prototype for the URDS. The present chapter discusses the conclusion,

overview of the features if the URDSMMS, future work and a brief summary about this

research work.

6.1 Conclusion

In this project, the features of a monitoring and management system suitable for software

component discovery systems were explored and these features were implemented for the

URDS system. This work was primarily motivated by the lack of a monitoring and

monitoring system that satisfies the requirements of component based discovery systems

(discussed in chapter 3).

The following are the conclusions that can be drawn by the implementation of

URDSMMS and from the experimental results shown in the previous chapters:

• The information displayed by the URDSMMS is in accordance with the data

produced by the underlying system (URDS).

• The information displayed by the URDSMMS, such as utilization of entities (QM

and HH), average response time, etc., helps the system administrator in

determining the overall performance of the system.

• A system administrator can control and coordinate the entities of URDS, by

instantiate and terminate entities and also monitor the system behavior.

• The interface of URDSMMS improves the usability of the system and serves as

an easy-to-use interface for a novice administrator/integrator, to oversee the

functionality of the system.

 73

6.2 Features of URDSMMS

• Provides a remote control (initiation and termination) of the entities in the URDS.

• Generates the utilization graphs for Headhunters and Query Manager, so as to

reveal the performance of the system.

• Displays a continuous snapshot of the URDS and, optionally displays the details

of the individual entities.

• Provides an option for system integrators to submit queries for processing and

retrieve the results.

• Provides an error dialogue for the system administrator.

6.3 Future Work

Some of the possible future enhancements are:

• Heterogeneous Environments: Distributed system span heterogeneous

technological platforms (such as .net, CORBA, etc). The present URDSMMS

architecture has only been implemented for the J2EE platform; this can be

extended to other heterogeneous platforms.

• Hardware Resources: The present monitoring framework only considers software

resources. If hardware resources [MDS2, MAS04, HAW] (such as CPU

utilization, memory, etc.) were also considered, it would help the system

administrator to make better judgments, about where to deploy the components

(depending on the available resources on a particular system).

• Suspending Processes: In the present architecture, if an entity (e.g. Headhunter) is

idle for a long time, the system administrator can make the decision to kill that

process and redeploy it on another remote host if necessary. Instead of this

approach, the process can be suspended and redeployed on another remote host,

thereby saving the present state of the process.

• Error Monitoring Architecture: Though the URDSMMS provides an error

monitoring feature for the URDS, it does not consider catastrophic failures, such

 74

as failure of a remote host or loss of messages, which would help in notifying

such errors or failures.

• Visualization of Monitoring Results: Visualizing the monitoring information will

enable the user to analyze the data easily. User interface toolkits like prefuse

[PRE] can be used for building interactive visualizations. This enables data to be

represented as a set of entities (or nodes) which can be connected by any number

of relations (or edges).

• Fault Handling Features: The monitoring system does not take care of fault

tolerance, e.g., if an error occurs, the system cannot handle the error dynamically,

so it just notifies the system administrator regarding the error. The monitoring

system should be able to provide an solution during runtime and therefore handle

such errors.

• Event Ordering: In a DCS, an event can arrive out of order, which makes event

ordering (partial or total) as an important issue to be considered in monitoring

applications [LAM78]. For example, event traces may be merged or combined

based on casual ordering. The monitoring system should be able to handle such an

issue.

6.4 Summary

The research has presented a framework (URDSMMS) for monitoring and managing the

URDS. This framework has been implemented, incorporating the key features for

monitoring and by providing a user interface, which improves the usability of the URDS.

The report also details the experiments that were performed to test the scalability and

empirically validate and the features of the monitoring system. Thus, the URDSMMS

architecture along with its interface makes it a promising solution for monitoring and

management of the URDS.

 75

LIST OF REFERENCES

[ALS98] Al-Shaer E., “A Hierarchical Filtering-based Monitoring Architecture for
Large-scale Distributed Systems”, Ph.D. Dissertation, Computer Science Department,
Old Dominion University, December 1998.

[AMI] The AMIDST project, see http://amidst.ctit.utwente.nl/

[ANJ04] Kumari A., “Synchronization and Quality of Service Specification and
Matching of Software Components”, M. S. Thesis, Department of Computer &
Information Science, Indiana University Purdue University Indianapolis, December,
2004.

[APA03] Apache Jakarta Project. Apache Tomcat, 2003. http://jakarta.apache.org/tomcat/

[APA04] Apache HTTP Server Project, “Apache HTTP Server Version 1.3”
http://httpd.apache.org/

[ARL2002] Arlow J., Neustadt I., “UML and the Unified: Process Practical Object-
Oriented Analysis & Design”, Addison Wesley, 2002

[BEA] BEA WebLogic Server® 8.1
http://www.bea.com/products/weblogic/server/index.shtml

[BRA02] Brahnmath G., Raje R., Olson A., Bryant B., Auguston M., Burt C., Quality of
Service Catalog for Software Components. The Proceedings of the Southeastern Software
Engineering Conference, Huntsville, Alabama, USA, April 2002.

[CLA] ClassAd: http://www.cs.wisc.edu/condor/classad/index.html

[CON] Condor: http://www.cs.wisc.edu/condor/index.html

[COU01] Coulouris G., Dollimore J., Kindberg T., “Distributed System Concepts and
Design”, Addison Wesley, 2001

[CZA00] Czarnecki K., Eisenecker U., Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, 2000.

 76

[CZA01] Czajkowski K., et al., “Grid Information Services for Distributed Resource
Sharing”. 10th IEEE International Symposium on High Performance Distributed
Computing. 2001: IEEE Press.

[DAT02] DataGrid Information and Monitoring Services Architecture: Design,
Requirements and Evaluation Criteria”, Technical Report DataGrid-03-D3.2-334453-4-0
, DataGrid, 2002.

[DES] de Sousa M., Richardson D., “Issues on Software Monitoring”, Technical report,
ICS, 2002.

[DEV05] Barun D., “Enhancement of UniFrame Resource Discovery Service”, M. S.
Thesis, Department of Computer & Information Science, Indiana University Purdue
University Indianapolis, February, 2005.

[DIA00] Diakov N., Batteram H., Zandbelt H., van Sinderen M, “Monitoring of
distributed component interactions”. Proceedings of 7th Int. Conf. on Interactive
Distributed Multimedia Systems and Telecommunication Services (IDMS), Enschede, The
Netherlands, October 2000.

[FIS01] Fisher S., “Relational Model for Information and Monitoring”. Technical Report
GWD-Perf-7-1, GGF, 2001.

[FOS99] Foster I., Kesselman C.,“The Grid: Blueprint of a New Computing
Infrastructure”, Morgan Kaufmann, 1999. ISBN 1-55860-475-8.

[FRI] The FRIENDS project, see http://friends.gigaport.nl/

[GAM95] Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns Elements of
Reusable Object-Orientated Software”. Addison-Wesley, 1995.

[GAO00] Gao J, Zhu E., Shim S., Chang L., “Monitoring Software Components and
Component-Based Software”. Proceedings of the 24th Annual International Computer
Software and Applications Conference, COMPSAC 2000.

[GGF] Global Grid Forum: http://www.gridforum.org/

[GLO] Globus Toolkit : http://www-unix.globus.org/toolkit/

[HAW] Hawkeye: http://www.cs.wisc.edu/condor/hawkeye/

[HOF94] Hofmann R., Klar R., Mohr B., Quick A., Siegle M., “Distributed Performance
Monitoring: Methods, Tools and Applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, pp. 585{597, June 1994)

[IBMa] IBM, “HTTP Server version 2.0”.

 77

http://www-3.ibm.com/software/webservers/httpservers/

[IBMb] IBM WebSphere® Application Server V6.0
http://www-306.ibm.com/software/webservers/appserv/was/

[IIS] Internet Information Services (IIS) 6.0
http://www.microsoft.com/WindowsServer2003/iis/default.mspx

[JOY87] Joyce J., Lomow G., Slind K., Unger B., Monitoring Distributed Systems. ACM
Transactions on Computer Systems, vol. 5, no. 2, pp. 121-50, 1987.

[LAM78] Lamport L., “Time, clocks, and the ordering of events in a distributed system”.
Communication ACM 21, 7 (Jul. 1978), 558-565.

[LDA] OpenLdap: http://www.openldap.org/
[MAN95] Mansouri-Samani M., “Monitoring of Distributed Systems”, Ph.D.
Dissertation, Department of Computing, University of London, December 1995

[MAS04] Massie M., Chun B., and Culler D. “The Ganglia Distributed Monitoring
System: Design, Implementation and Experience”. Parallel Computing, April 2004.

[MDS2] MDS2: http://www.globus.org/mds/

[MYS04] Mysore P., Raje R., Olson A., Bryant B., Auguston M., Burt C.,“Scalability
and fault handling issues in UniFrame Discovery Service,” Technical Report TR-CIS-
0705-04, Department of Computer & Information Science, Indiana University Purdue
University Indianapolis, 2004.

[OES99] Oestereich B., “Developing Software with UML Object-Oriented Analysis &
Design in Practice”, Addison Wesley, 1999

[PRE] prefuse: interactive information visualization, http://prefuse.sourceforge.net/

[PRE02] Preece J., Rogers Y., Sharp H., Interaction Design: beyond human-computer
interaction, John Wiley & Sons, Inc., 2002.

[RAJ00] Raje R., UMM: Unified Meta-object Model. Proceedings of 4th IEEE
International Conference on Algorithms and Architecture for Parallel Processing, Hong
Kong, December 2000.

[RAJ01] Raje R., Bryant B., Auguston M., Olson A., Burt C., A Unified Approach for
the Integration of Distributed Heterogeneous Software Components. Proceedings of the
2001 Monterey Workshop on Engineering Automation for Software Intensive System
Integration, Monterey, California, USA, June 2001.

 78

[SCH95] Schroeder B. “On-Line Monitoring: A Tutorial”, IEEE Computer, vol. 28, n. 6,
June 1995, pp.72-77

[SIR02] Siram N., “An Architecture for Discovery of Heterogeneous Software
Components.”, M. S. Thesis, Department of Computer & Information Science, Indiana
University Purdue University Indianapolis, March, 2002.

[SIR03] Siram N., Raje R., Olson A., Bryant B., Burt C., Auguston M, “An Architecture
for the UniFrame Resource Discovery Service,” Proceedings of SEM 2002, 3rd
International Workshop on Software Engineering and Middleware, May 20-21, 2002,
Orlando, Florida Springer-Verlag Lecture Notes in Computer Science, Vol. 2596, 2003,
pp. 20-35

[SOT02] Sottile M., Minnich R., “Supermon: A highspeed cluster monitoring system”.
Proceedings of Cluster, September 2002.

[SUN] Sun Java System Web Server 6.1
http://www.sun.com/software/products/web_srvr/home_web_srvr.xml

[SUN01] Sun Microsystems. JavaTM 2 Platform Enterprise Edition Specification, Version
1.3. August 2001. http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf.

[SUN01a] Sun Microsystems. Designing Enterprise Applications with the J2EE Platform
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/platform_tec
hnologies/index.html, 2001

[SUN02] Sun Microsystems. The J2EE TutorialTM. April 2002.
http://java.sun.com/j2ee/tutorial/1_3-fcs/.

[SUN02a] Java BluePrints - J2EE Patterns, 2002
http://java.sun.com/blueprints/patterns/MVC-detailed.html,

[SUN03] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE), v1.4.0. 2003.
http://java.sun.com/j2se/1.4/.

[SUN03a] Sun Microsystems. JDBCTM API. 2003.
http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/.

[SUN03b] Sun Microsystems. Java Transaction API (JTA). 2003.
http://java.sun.com/products/jta/.

[SUN03c] Sun Microsystems. The JNDI Tutorial. 2003.
http://java.sun.com/products/jndi/tutorial/.

[SUN03d] Sun Microsystems. J2EE Connector Architecture. 2003.
http://java.sun.com/j2ee/connector/.

 79

[SUN03e] Sun Microsystems. Java API for XML Processing (JAXP) Documentation.
2003. http://java.sun.com/xml/jaxp/docs.html.

[SUN03f] Sun Microsystems. Java Remote Method Invocation (RMI).
http://java.sun.com/products/jdk/rmi/.

[SUT95] Sutcliffe A., “Human-Computer Interface Design”. 2nd ed. Houndsmills,
Basingstoke, Hampshire: Macmillan Press Ltd, 1995.

[TIE02] Tierney B., Aydt R., Gunter D, Smith W., Taylor V., Wolski R., Swany M., “A
Grid Monitoring Architecture” - The Global Grid Forum GWD-GP-16-2, January 2002.

[TUM04] Tummala K., “Glue Generation Framework In UniFrame for the CORBA-
JAVA/RMI INTEROPERABILITY “ M.S. Project TR-CIS-0302-03, Department of
Computer & Information Science, Indiana University Purdue University Indianapolis,
May, 2004

[VNE03] User-Centred Product Creation in Interactive Electronic Publishing
http://www.vnet5.org/

[WWW03] World Wide Web. HTTP - Hypertext Transfer Protocol. 2003.
http://www.w3.org/Protocols/

 80

APPENDICES

APPENDIX A: State Diagrams of URDS Entities

A state diagram can be defined as a diagram which “shows a sequence of states an object
can assume during its lifetime, together with the stimuli that cause change of state”
[OES99].

In this appendix the state diagrams for each entity of URDS is provided. Below is the
description for understanding the state diagrams and followed by the acronyms used in
the state diagrams:
• state changes takes place only when an event is fired; events are fired only if the

condition in [] takes place (if exists)
• all the components are considered to run continuously, they reach a stop state only if

there is an unrecoverable error (catastrophic error) or the system needs to be
shutdown

• every state chart diagram has some associated error events, like type1 and type2
errors, on the occurrence of which a different remedial action takes place; depending
upon the error encountered, an associated error message is displayed

Domain Security Manager State Diagram:

The following example shows the state transitions for a DSM. In this diagram each state
is uniquely identified by a set of flags and description about each flag is presented along
with its state diagram. The DSM is initialized and reaches the Start state, where its tries
to connect to its repository. Upon successful connection it reaches the DSM Ready state
and sets the conn_rep_flag to 1. If the connection is unsuccessful, it raises an event and
reaches the Error state and sets the value of the error_flag to 1. Depending upon the type
of error, an appropriate error message is displayed. After this action, the error_flag is
reset and the control reaches the Start state, giving it an option to reconnect to the
repository. When DSM is in DSM Ready state, it may receive requests from the principals
or QM. Upon a request, the DSM reaches the Process request state and sets the busy_flag
to 1. After the request has been processed, the control goes back to the DSM Ready state
and resets the flag value to 0. If an error occurs in the Process request state, an event is
raised. Subsequently, control goes to Error state where the error_flag is set to 1 and
displays a suitable error message. After this action the error_flag is reset to 0 and control
reaches DSM Ready state. The DSM reaches a Stop state if an unrecoverable error or a
catastrophic failure occurs, in such a case Stop state is reached directly from any of the
above mentioned states.

 81

DomainSecurityManager

Start

do/connect to repository
conn_rep_flag = 0
error_flag = 0

Start

Stop

DSM Ready

shutdown
[unrecoverable error]

successful
connection do/accept requests

conn_rep_flag = 1
error_flag = 0
busy_flag = 0

Process request

do/process request
busy_flag = 1
error_flag = 0

receive request from
principals or QM

reset busy_flag
[execution done]

Error
do/print error message
error_flag = 1

unsuccessful
connection
(type1 error)

on error
(type2 error)

reset error_flag
[type1 error] reset error_flag

[type2 error]

All requests are considered as if they are of the same kind (requests from principals and QM)
• conn_rep_flag - flag to show the connection between DSM and its repository
• error_flag - this flag is set to 1 only if there is an error
• busy_flag - this flag is set to 1 if a request is being processed

Figure a State Diagram of Domain Security Manager

 82

HeadHunter
Start

do/authenticate with DSM
auth_flag = 0
error_flag = 0

Start

Stop

shutdown
[unrecoverable error]

Create Metarepository
do/create MR
auth_flag = 1
create_MR_flag = 0
error_flag = 0

Error
do/print error message
error_flag = 1

authentication
successful

authentication
unsuccessful
(type1 error) reset error_flag

[recoverable error]

Broadcast
do/broadcast its multicast addr
broadcast_flag = 1
populate_flag = 0
failure_flag = 0
error_flag = 0

successful creation

error in creating
MR(type2 error)

Failure Detection
do/failure detection and send
msg to DSM if necessary
failure_flag = 1
error_flag = 0

Populate MR
do/rcv comp specs from ARs
do/insert comp specs
populate_flag = 1
error_flag = 0

rcv response
from ARs

reset populate_flag
[execution done]

after fixed
time interval

rcv new query

reset error_flag
[type2 error]

reset failure_flag
[failure detection done]

on type4 error

on type5 error

Propagate query
do/propagate query to other
HHs
propagate_flag = 1
error_flag = 0

reset propagate_flag
[propagation done]

Query_wait
do/wait for query
from QM
create_MR_flag = 1
error_flag = 0
broadcast_flag = 0
propagate_flag = 0

fixed time
interval

reset error_flag
[type3 & type4
errors]

 Figure b State Diagram of Headhunter

 83

• auth_flag - flag to represent if AR is authenticated with DSM ;
• error_flag - this flag is set to 1 only if there is an error
• create_MR_flag - to represent if MR is created or not
• broadcast_flag - to represent if HH is broadcasting its multicast address or not
• popagate_flag - flag to represent if HH is propageting the query to other HHs
• populate_flag - this flag is set to 1 when HH receives comp specs from AR and stores them in MR
• failure_flag - this is set to 1 when the failure detection process is going on

 84

ActiveRegistry

Start
do/authenticate with DSM
auth_flag = 0
error_flag = 0

Start

Stop

shutdown
[unrecoverable error]

AR Ready
auth_flag = 1
error_flag = 0
register_comps = 0

Error
do/print error message
error_flag = 1

authentication
successful

authentication
unsuccessful
(type1 error)

reset error_flag [type1
or type2 errors]

Register Components
do/register software components
register_comps = 1
HH_comps = 0
HH_ping = 0
error_flag = 0

register s/w components
[if available]

Process ping requests
do/respond to ping request
HH_ping = 1
error_flag = 0

Process HHs request
do/process request for
component specs
HH_comps = 1
error_flag = 0

rcv request
from HHs

reset HH_comps
[execution done]

rcv ping request

on error
(type1 error)

reset error_flag
[type2 error]

reset HH_ping
[pinging done]

on error (type3 error)

on error
(type4 error)

reset error_flag [type3
or type4 errors]

Figure c State Diagram of Active Registry

 85

• auth_flag - flag to represent if AR is authenticated with DSM
• error_flag - this flag is set to 1 only if there is an error
• register_comps - flag to represent if AR is resgistring service components
• HH_comps - process HH’s request for component specifications
• HH_ping - process HH’s ping request

 86

QueryManager

Start
do/authenticate with DSM
auth_flag = 0
error_flag = 0

Start

Stop

shutdown
[unrecoverable error]

QM Ready
auth_flag = 1
error_flag = 0
busy_flag = 0

Error

do/print error message
error_flag = 1

authentication
successful

authentication
unsuccessful
(type1 error)

reset error flag
[type1 error]

Process Query
do/get HHs list from DSM
do/query HHs for comp specs.
result_flag = 0
busy_flag = 1
error_flag = 0

rcv query
from SI/LM

Send Result
do/send result back to
SI/LM
busy_flag = 1
result_flag = 1
error_flag = 0

rcv comp specs
from HHs

reset busy_flag
[query executed]

on type2 error

reset error_flag
[type2 error]

on type3 error

reset error_flag
[type3 error]

Figure d State Diagram of Query Manager

 87

• auth_flag - flag to represent if AR is authenticated with DSM
• error_flag - this flag is set to 1 only if there is an error
• busy_flag - this flag is set to 1 if QM is processing a query
• result_flag - this flag is set to 1 if the resultant component specifications are available

 88

LinkManager

Start
do/send its location to SI
ack_flag = 0
error_flag = 0

Start

Stop

shutdown
[unrecoverable error]

LM Ready

ack_flag = 1
error_flag = 0
busy_flag = 0

Error

do/print error message
error_flag = 1

acknowledgement
received

acknowledgement
not received
(type1 error)

reset error flag
[type1 error]

Query Propagation
do/propagate query to QM and
other LMs
result_flag = 0
busy_flag = 1
error_flag = 0

rcv abs comp list &
LMs loc from SI/LM

Send Result

do/send result back to
SI/LM
busy_flag = 1
result_flag = 1
error_flag = 0

get result [query
processed]

reset busy flag
[query executed]

on type2 error

on type3 error

reset error_flag
[type3 error]

reset error flag
[type2 error]

Figure e State Diagram of Link Manager

 89

• ack_flag - represents if it receives an acknowledgement from SG
• error_flag - this flag is set to 1 only if there is an error
• busy_flag - this flag is set to 1 if LM is propagating a query to QM or other LM’s
• result_flag - this flag is set to 1 if the resultant component specifications are available

 90

AdapterManager

Start
do/send its location to SI
ack_flag = 0
error_flag = 0

Start

Stop

shutdown
[unrecoverable error]

Connect to AM Repository
do/connect to AM repository
ack_flag = 1
error_flag = 0
connect_flag = 0

Error

do/print error message
error flag = 1

acknowledgement
received

acknowledgement
not received
(type1 error)

reset error flag
[type1 error]

AM Ready
do/ rcv query from SI
connect_flag = 1
ready_AM = 0
error_flag = 0
busy_flag = 0

successful connection

Search Adapter comps
do/search adapter comps
in repository
busy_flag = 1
error_flag = 0
found_AMrep = 0
make_comp = 0

rcv query from
SG/LM

reset busy flag
[query executed]

unsuccessful
connection
(type2 error)

reset error_flag
[type2 error]

on type3 error

reset error_flag [type3 or
type4 or type5 error]

Retrieve Adapter comps
do/send adapter comps
specs to SI
busy_flag = 1
error_flag = 0
found_AMrep = 1

adapter comp
found in AM
repository

Retrieve Adapter comps
do/make adapter comps
and send to SI
busy_flag = 1
error_flag = 0
make_comp = 1

adapter comp
not found in
AM repository

reset busy_flag and
found_AMrep [process done]

reset busy_flag and
make_comp [process done]

on type4 error

on type5 error

Figure f State Diagram of Adapter Manager

 91

Figure f State Diagram of Adapter Manager
• ack_flag - flag to represent if AM receives an acknowledgement from SG or not
• error_flag - this flag is set to 1 only if there is an error
• busy_flag - this flag is set to 1 if AM is processing a query from SG
• connect_flag - this flag is set to 1 if a connection is established between AM and its repository
• found_AMrep - this flag is set if AM finds an already existing adapter component in its repository
• make_comp - this flag is set if AM need to synthesize adapter components

 92

APPENDIX B: Use Case Diagrams

Stop Entity

Pre: System Administrator has accessed the StopEntity (DSM,
HH, AR or QM) page, by clicking on the appropriate menu.

Post: System Administrator has got a message saying entity
successfully terminated or error in terminating entity.

System
Administrator

Figure i Use Case Diagram for terminating an entity

Get URDS
Snapshot

Pre: System Administrator has accessed the URDS Snapshot
page, by clicking on the menu button.

Post: The URDS Snapshot details have been displayed for the
system administrator to view.

System
Administrator

Figure ii Use Case Diagram for retrieving URDS Snapshot

 93

Get Message
Traffic

Pre: System Administrator has accessed the Message Traffic
page, by clicking on the menu button.

Post: The message traffic of URDS have been displayed to
the system administrator to view (upon a successful retrieval,
else an error message is seen).

System
Administrator

Figure iii Use Case Diagram for retrieving Message Traffic

Draw Average
Response Time

Graph

Pre: System Administrator has accessed the Response Time
Graph page, by clicking on the menu button.

Post: The Response Time Graph of the executed queries of
URDS is displayed to the system administrator.

System
Administrator

Figure iv Use Case Diagram for display of average response time graph

 94

Draw
Headhunter
Utilization

Pre: System Administrator has accessed the Headhunter
Utilization page, by clicking on the menu button.

Post: The utilization graph of that particular Headhunter of
URDS is displayed to the system administrator.

System
Administrator

Figure v Use Case Diagram for display of Headhunter utilization graph

Draw
QueryManager

Utilization

Pre: System Administrator has accessed the QueryManager
Utilization page, by clicking on the menu button.

Post: The utilization graph of the Query Manager of URDS is
displayed to the system administrator.

System
Administrator

Figure vi Use Case Diagram for display of Query Manager Utilization graph

 95

Submit Query

Pre: System Integrator has accessed the New Query page, by
clicking on the menu button.

Post: System integrator views a message stating whether or
not the query was successfully submitted to the URDS.

System Integrator

Figure vii Use Case Diagram for submitting a query to URDS

View Results

Pre: System Integrator has accessed the Results page, by
clicking on the menu item.

Post: The system integrator views the results for any
particular query.

System Integrator

Figure viii Use Case Diagram for viewing results of a query

 96

APPENDIX C: Screen Shots of URDSMMS

Figure i: View showing the main page of system administrator view

Figure ii: View showing the initiation of a Domain Security Manager

 97

Figure iii: View showing the initiation of a Headhunter

Figure iv: View showing the initiation of an Active Registry

 98

Figure v: View showing the initiation of a Query Manager

Figure vi: View showing the details of Headhunters

 99

Figure vii: View showing the details of Active Registries

Figure viii: View showing the graph of Headhunter’s utilization

 100

Figure x: View showing the system help of URDSMMS (system
administrator view)

Figure ix: View showing the graph of Query Manager’s utilization

 101

Figure xi: View showing the graph of average query response time

Figure xii: View showing the termination of a Headhunter

 102

Figure xiii: View showing the termination of a Active Registry

 103

APPENDIX D: User Surveys

1. URDSMMS User Survey

This appendix provides the actual user survey presented to UniFrame team members as
noted in chapter 4. It consists of two separate types of questions, 1) UniFrame Specific
that relate to questions on UniFrame and features of URDS, and 2) User Interface
Specific which relates to question of the type of menu system.

URDS Monitoring and Management System (URDSMMS) User Survey

UniFrame Specific

• How would you rate your familiarity with the UniFrame project?

(poor) 1 2 3 4 5 (great)

• How would you rate your familiarity with the UniFrame Resource Discovery Service

(URDS)?
(poor) 1 2 3 4 5 (great)

• How important is it to monitor the URDS?

(little) 1 2 3 4 5 (very imp)

• How important is managing the URDS via an easy-to-use interface?

(little) 1 2 3 4 5 (very imp)

• Do you think that the URDSMMS should contain two views, namely administrator view and
system integrator/user view? Do you suggest any other view, if so please mention.
(yes/no)

• Rate the features by their importance, that you would like to see in URDSMMS, on a scale of

1 (least important) to 5 (very important)
a. Remote or local initiation and killing of different entities of URDS (such as

Headhunters, Active Registries, Domain Security Manager and Query Manager)

b. Submitting a query for searching components _____
c. Representing the response time of a query in a graphical format with respect to

time _____
d. Showing the statistical and individual details of all active entities of URDS in a

single snap-shot _____
e. Checking if the Headhunters are active or not _____
f. Providing help for the URDSMMS _____
g. Displaying the utilization of Headhunter or Query Manager at any point of time

 104

(so that we can know how much time the Headhunter or Query manager is busy) _____

User Interface Specific

• Do you feel comfortable with a menu driven (menus and sub-menus) interface?
(Yes/No, if no please mention)

Compiled URDSMMS User Survey Results

This appendix provides the compiled results of the above mentioned URDSMMS User Survey.

Survey Taken: 1/30/2005
Count: 10
Scale (1-5)

Question: How would you rate your familiarity with the UniFrame project?
Total: 41
Average: 4.1

Question: How would you rate your familiarity with the UniFrame Resource Discovery

Service (URDS)?
Total: 41
Average: 4.1

Question: How important is it to monitor the URDS?
Total: 50
Average: 5

Question: How important is managing the URDS via an easy-to-use interface?
Total: 50
Average: 5

Question: Do you think that the URDSMMS should contain two views, namely

administrator view and system integrator/user view? Do you suggest any other
view, if so please mention?

Yes: 10
No: 0

Rate the features by their importance, which you would like to, see in URDSMMS, on a scale of
least important to very important

Question:
• Remote or local initiation and killing of different entities of URDS (such as Headhunters,

Active Registries, Domain Security Manager and Query Manager)
Total: 45
Average: 4.5

• Submitting a query for searching components

 105

Total: 46
Average: 4.6

• Representing the response time of a query in a graphical format with respect to
Time
Total: 44
Average: 4.4

• Showing the statistical and individual details of all active entities of URDS in a

single snap-shot
Total: 46
Average: 4.6

• Checking if the Headhunters are active or not
Total: 44
Average: 4.4

• Providing help for the URDSMMS

Total: 44
Average: 4.4

• Displaying the utilization of Headhunter or Query Manager at any point of time

(so that we can know how much time the Headhunter or Query manager is busy)
Total: 44
Average: 4.4

User Interface Specific

Question: Do you feel comfortable with a menu driven (menus and sub-menus) interface?
Yes: 10
No: 0

 106

2. URDSMMS Usability Testing Survey

The below part of the appendix provides actual user survey mentioned in chapter 5. It
consists of questions specific to the usability of the URDSMMS.

URDS Monitoring and Management System (URDSMMS)
Usability Testing Survey

• Was the interface of URDSMMS easy to navigate?

(very hard) 1 2 3 4 5 (very easy)

• What do you think about the appearance of the interface?

(strongly dislike) 1 2 3 4 5 (strongly like)

• How easy was it to get started using the system?
(very hard) 1 2 3 4 5 (very easy)

• Was the help provided, useful in executing the features of URDSMMS?
(Yes/No)

• How easy is it for a user to navigate independently through the system (after having executed

it once before under supervision)?
(very hard) 1 2 3 4 5 (very easy)

• Was the classification of two views (system administrator view and system integrator view)

justified?
Yes/No

• Was the interface able to convey the relevant information about each feature?
(Yes/No)

• Thinking of the features and benefits of URDSMMS, rate your satisfaction?
(very bad) 1 2 3 4 5 (excellent)

• If at all you were asked to build a monitoring system, do you expect to borrow any ideas from

the URDSMMS.
(Yes/No)

 107

Compiled URDSMMS Usability Testing Survey Results

This appendix provides the compiled results of the above mentioned URDSMMS Usability
Testing Survey.

Question: Was the interface of URDSMMS easy to navigate?
Total: 29
Average: 4.833

Question: What do you think about the appearance of the interface?
Total: 22
Average: 3.667

Question: How easy was it to get started using the system?
Total: 27
Average: 4.5

Question: Was the help provided, useful in executing the features of URDSMMS?
Yes: 6
No: 0

Question: How easy is it for a user to navigate independently through the system (after

having executed it once before under supervision)?
Total: 25
Average: 4.167

Question: Was the classification of two views (system administrator view and system

integrator view) justified?
Yes: 6
No: 0

Question: Was the interface able to convey the relevant information about each feature?
Yes: 6
No: 0

Question: Thinking of the features and benefits of URDSMMS, rate your satisfaction?
Total: 27
Average: 4.5

Question: If at all you were asked to build a monitoring system, do you expect to borrow

any ideas from the URDSMMS.
Yes: 6
No: 0

 108

APPENDIX E: Class Diagram of URDSMMS Entities

Figure: Class diagram of URDSMMS entities

 109

APPENDIX F: Source Code

Monitor.java
/**
 * This class collects the monitoring information from URDS.
 *
 * @author Srikanth Reddy
 * @date Dec 2004
 */

import java.net.*;
import java.util.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.lang.*;
import java.io.*;
import java.sql.*;

public class Monitor extends UnicastRemoteObject implements IMonitor
{
 private static Hashtable DSMprocessList = new Hashtable();
 private static Hashtable HHprocessList = new Hashtable();
 private static Hashtable ARprocessList = new Hashtable();
 private static Hashtable QMprocessList = new Hashtable();
 private static Hashtable SIprocessList = new Hashtable();
 // for storing utilization values
 public static ArrayList qmutList = new ArrayList();
 public static Hashtable StoreHHList = new Hashtable();

 private static int cnt = 0;
 private static StringBuffer errBuff1 = new StringBuffer();
 private IQueryManager utilQM = null;
 private IHeadhunter utilHH = null;
 private IURDS_Proxy1 urdsProxy = null;
 private IQueryManager qm = null;
 private IDomainSecurityManager dsm1 = null;
 private IMsgTraffic obj4 = null;

 public Monitor() throws RemoteException {
 super();
 }

 public static void main(String[] args)
 {
 String monitorLocation="//magellan.cs.iupui.edu:9879/Monitor";
 try
 {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(monitorLocation, new Monitor());
 System.out.println("Monitor " + monitorLocation + " is ready.");
 }catch(Exception e)
 {
 System.out.println("Monitor failed: " + e);
 errBuff1.append((String)e.getMessage());
 }
 }

 110

 // to start DSM
 public int startDSM(String dsmlocation, int portNo)
 {
 int status = -1;
 Process p = null, p1 = null;
 StringBuffer outBuff3 = new StringBuffer();
 StringBuffer errBuff3 = new StringBuffer();
 StreamThread outThread3;
 StreamThread errThread3;
 BufferedInputStream stdOut3 = null;
 BufferedInputStream stdErr3 = null;

 try
 {
 Integer temp = new Integer(portNo);
 String fullLocn = "//" +dsmlocation +
".cs.iupui.edu:"+temp.toString()+"/DomainSecurityManager";
 System.out.println("Intial Time: " +System.currentTimeMillis());
 String cmd4 = "java -Xmx100m -Djava.security.policy=policy DomainSecurityManager
"+dsmlocation + " "+portNo;
 String cmd2 = "ssh -l sreddy phoenix java -Xmx100m -
Djava.security.policy=/home/sreddy/UTest/policy DomainSecurityManager "+dsmlocation + " "+portNo;
 ErrMonitor mon3= new ErrMonitor();
 if(dsmlocation.equalsIgnoreCase("magellan"))
 {
 p1 = Runtime.getRuntime().exec(cmd4);
 status = 0;
 }
 else if(dsmlocation.equalsIgnoreCase("phoenix"))
 {
 p1 = Runtime.getRuntime().exec(cmd2);
 status = 0;
 }

 if (status == 0)
 {
 DSMprocessList.put(fullLocn, p1);
 stdErr3 = new BufferedInputStream(p1.getErrorStream());
 stdOut3 = new BufferedInputStream(p1.getInputStream());
 errThread3 = new StreamThread(stdErr3, errBuff3, mon3);
 outThread3 = new StreamThread(stdOut3, outBuff3, mon3);
 errThread3.start();
 outThread3.start();
 Thread.sleep(15000);
 System.out.println("Process Completion Time: "
+System.currentTimeMillis());
 System.out.println("DSM Started");
 }
 }
 catch(Exception e)
 {
 System.out.println("Error...."+e.getMessage());
 e.printStackTrace();
 return(status);
 }
 return(status);
 }

 //to kill DSM
 public int stopDSM(String dsmlocation)
 {

 111

 int dsm_status1 = -1;

 try
 {
 Enumeration e = DSMprocessList.keys();
 while(e.hasMoreElements())
 {
 String locn = (String) e.nextElement();
 System.out.println(" DSM process is " +locn+" and dsmlocn is "
+dsmlocation);
 if(locn.equalsIgnoreCase(dsmlocation))
 {
 System.out.println(" Destroying DSM process " +dsmlocation);
 Process p = (Process) DSMprocessList.get(locn);
 p.destroy();
 dsm_status1 = 0;
 break;
 }
 }
 if (dsm_status1==0)
 {
 //to delete the dsmid from the database table
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 String sqlstmt = null;
 sqlstmt = "delete from dsm where dsmid = '"+dsmlocation+"'";
 statement.executeQuery("delete from dsm where dsmid = '"+dsmlocation+"'");
 statement.close();
 dbconn.close();
 System.out.println("Query executed");
 }

 } catch(Exception ex)
 {
 ex.printStackTrace();
 }

 if (dsm_status1==0)
 {
 return(0);
 }
 else
 return(-1);
 }

 // to print error messages
 public StringBuffer getError() throws RemoteException
 {
 return errBuff1;
 }

 // to collect error messages
 public void setError(String error) throws RemoteException
 {
 if(error != null && error != "Headhunter")
 {
 errBuff1.append(error);
 }

 112

 }

 // to start HH
 public int startHH(String hhlocation, int portNo, String dsmlocation, String domain, String name, String pwd)
 {
 int hh_status = -1;
 StringBuffer outBuff1 = new StringBuffer();
 StreamThread outThread1;
 StreamThread errThread1;
 BufferedInputStream stdOut1 = null;
 BufferedInputStream stdErr1 = null;

 Process p1= null, p2 = null;
 try
 {
 ErrMonitor mon1 = new ErrMonitor();
 Integer temp = new Integer(portNo);
 String fullLocn = "//" +hhlocation + ".cs.iupui.edu:"+temp.toString()+"/Headhunter";
 System.out.println("Intial Time: " +System.currentTimeMillis());
 String cmd4 = "java -Xmx100m -Djava.security.policy=policy Headhunter "+hhlocation
+ " "+portNo+ " " +dsmlocation+ " "+ domain+ " " +name+ " " +pwd;
 String cmd2 = "ssh -l sreddy phoenix java -Xmx100m -
Djava.security.policy=/home/sreddy/UTest/policy Headhunter "+hhlocation + " "+portNo+ " " +dsmlocation+ " "+
domain+ " " +name+ " " +pwd;

 System.out.println("Trying to start HH :"+hhlocation);
 if(hhlocation.equalsIgnoreCase("magellan"))
 {
 try
 {
 Runtime rt = Runtime.getRuntime();
 p1 = rt.exec(cmd4);
 hh_status = 0;
 }
 catch (Throwable t)
 {
 errBuff1.append((String)t.getMessage());
 t.printStackTrace();
 }
 }
 else if(hhlocation.equalsIgnoreCase("phoenix"))
 {
 p1 = Runtime.getRuntime().exec(cmd2);
 System.out.println("phoenix cmd2 executed");
 hh_status = 0;
 }
 else
 {
 String cmd3 = "ssh -l sreddy "+hhlocation+ " java -Xmx100m -
Djava.security.policy=/home/sreddy/UTest/policy Headhunter "+hhlocation + " "+portNo+ " " +dsmlocation+ " "+
domain+ " " +name+ " " +pwd;
 p1 = Runtime.getRuntime().exec(cmd3);
 System.out.println("cmd3 executed");
 hh_status = 0;
 }

 if (hh_status == 0)
 {
 HHprocessList.put(fullLocn, p1);
 stdErr1 = new BufferedInputStream(p1.getErrorStream());
 stdOut1 = new BufferedInputStream(p1.getInputStream());

 113

 errThread1 = new StreamThread(stdErr1, errBuff1, mon1);
 outThread1 = new StreamThread(stdOut1, outBuff1, mon1);
 errThread1.start();
 outThread1.start();

 System.out.println("Process Completion Time: "
+System.currentTimeMillis());
 System.out.println("HH Started");
 //for maintaing the histroy of Utilization of HH
 HHUtilization(fullLocn);
 }
 else
 System.out.println("Error in starting the HH");

 } catch(Exception e)
 {
 System.out.println("Error...."+e.getMessage());
 e.printStackTrace();
 errBuff1.append((String)e.getMessage());
 }
 return(hh_status);
 }

 // to kill HH
 public int stopHH(String hhlocation)
 {
 int hh_status1 = -1;
 Process p1 = null;
 try
 {
 Enumeration e = HHprocessList.keys();

 while(e.hasMoreElements())
 {
 String locn = (String) e.nextElement();
 System.out.println(" HH process is " +locn+" and hhlocn is " +hhlocation);
 if(locn.equalsIgnoreCase(hhlocation))
 {
 System.out.println(" Destroying HH process " +hhlocation);
 p1 = (Process) HHprocessList.get(locn);
 p1.destroy();
 hh_status1 = 0;
 break;
 }
 }

 // to remove the hh from the dsm list
 dsm1 =
(IDomainSecurityManager)Naming.lookup("//magellan.cs.iupui.edu:2000/DomainSecurityManager");
 dsm1.updateHHList(hhlocation);

 if (hh_status1==0)
 {
 //to delete the dsmid from the database table
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
 String sqlstmt = null;
 sqlstmt = "delete from hh where hhid = '"+hhlocation+"'";
 statement.executeQuery("delete from hh where hhid = '"+hhlocation+"'");

 114

 statement.close();
 dbconn.close();
 }

 }catch(Exception ex1)
 {
 ex1.printStackTrace();
 errBuff1.append((String)ex1.getMessage());
 }

 return(hh_status1);
 }

 // to start AR
 public int startAR(String arlocation, int portNo, int coportNo, String dsmlocation, String domain, String
name, String pwd)
 {
 int ar_status = -1;
 Process p1 = null, p2 = null;
 StringBuffer outBuff = new StringBuffer();
 StringBuffer errBuff = new StringBuffer();
 StreamThread outThread;
 StreamThread errThread;
 BufferedInputStream stdOut = null;
 BufferedInputStream stdErr = null;

 try
 {
 Integer temp = new Integer(portNo);
 String fullLocn = "//" +arlocation + ".cs.iupui.edu:"+temp.toString()+"/ActiveRegistry";
 System.out.println("Initial Time: " +System.currentTimeMillis());
 String cmd4 = "java -Xmx100m -Djava.security.policy=policy ActiveRegistry
"+arlocation + " "+portNo+" " + coportNo+ " " +dsmlocation+ " "+ domain+ " " +name+ " " +pwd;
 String cmd2 = "ssh -l sreddy phoenix java -Xmx100m -
Djava.security.policy=/home/sreddy/UTest/policy ActiveRegistry "+arlocation + " "+portNo+ " " + coportNo+ " "
+dsmlocation+ " "+ domain+ " " +name+ " " +pwd;
 ErrMonitor mon = new ErrMonitor();

 System.out.println("Trying to start AR :"+arlocation);
 if(arlocation.equalsIgnoreCase("magellan"))
 {
 try
 {
 System.out.println("printing ar cmd "+cmd4);
 p1 = Runtime.getRuntime().exec(cmd4);
 ARprocessList.put(fullLocn, p1);
 ar_status = 0;
 }
 catch (Throwable t1)
 {
 t1.printStackTrace();
 }
 }
 else if(arlocation.equalsIgnoreCase("phoenix"))
 {
 p1 = Runtime.getRuntime().exec(cmd2);
 System.out.println("phoenix cmd2 executed");
 ar_status = 0;
 }
 else
 {

 115

 String cmd3 = "ssh -l sreddy "+arlocation+" java -Xmx100m -
Djava.security.policy=/home/sreddy/UTest/policy ActiveRegistry "+arlocation + " "+portNo+ " " + coportNo+ " "
+dsmlocation+ " "+ domain+ " " +name+ " " +pwd;
 p1 = Runtime.getRuntime().exec(cmd3);
 System.out.println("cmd3 executed");
 ar_status = 0;
 }

 if (ar_status == 0)
 {
 ARprocessList.put(fullLocn, p1);
 stdErr = new BufferedInputStream(p1.getErrorStream());
 stdOut = new BufferedInputStream(p1.getInputStream());
 errThread = new StreamThread(stdErr, errBuff, mon);
 outThread = new StreamThread(stdOut, outBuff, mon);
 errThread.start();
 outThread.start();
 System.out.println("Process Completion Time: "
+System.currentTimeMillis());
 System.out.println("AR Started");
 }
 else
 {
 System.out.println("Error in starting the AR");
 }
 } catch(Exception e)
 {
 System.out.println("Error...."+e.getMessage());
 e.printStackTrace();
 }
 return(ar_status);
 }

 // to kill AR
 public int stopAR(String arlocation)
 {
 int ar_status1 = -1;

 try
 {
 Enumeration e = ARprocessList.keys();

 while(e.hasMoreElements())
 {
 String locn = (String) e.nextElement();
 System.out.println(" AR process is " +locn+" and arlocn is " +arlocation);
 if(locn.equalsIgnoreCase(arlocation))
 {
 System.out.println(" Destroying AR process " +arlocation);
 Process p2 = (Process) ARprocessList.get(locn);
 p2.destroy();
 ar_status1 = 0;
 break;
 }
 }

 dsm1 =
(IDomainSecurityManager)Naming.lookup("//magellan.cs.iupui.edu:2000/DomainSecurityManager");
 dsm1.updateARList(arlocation);

 if (ar_status1==0)

 116

 {
 //to delete the dsmid from the database table
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 String sqlstmt = null;
 sqlstmt = "delete from ar where arid = '"+arlocation+"'";
 statement.executeQuery("delete from ar where arid = '"+arlocation+"'");
 statement.close();
 dbconn.close();
 System.out.println("Query executed");
 }

 } catch(Exception ex2)
 {
 ex2.printStackTrace();
 }

 return(ar_status1);
 }

 // to start QM
 public int startQM(String qmlocation, int portNo, String dsmlocation,String name, String pwd)
 {
 int qm_status = -1;
 Process p1 = null, p2 = null;
 StringBuffer outBuff2 = new StringBuffer();
 StringBuffer errBuff2 = new StringBuffer();
 StreamThread outThread2;
 StreamThread errThread2;
 BufferedInputStream stdOut2 = null;
 BufferedInputStream stdErr2 = null;
 try
 {
 Integer temp = new Integer(portNo);
 String fullLocn = "//" +qmlocation + ".cs.iupui.edu:"+temp.toString()+"/QueryManager";
 System.out.println("Initial Time: " +System.currentTimeMillis());
 ErrMonitor mon2 = new ErrMonitor();
 String cmd4 = "java -Xmx100m -Djava.security.policy=policy QueryManager
"+qmlocation + " "+portNo+ " " +dsmlocation+ " "+name+ " " +pwd+" > qm.txt";
 String cmd2 = "ssh -l sreddy phoenix java -Xmx100m -
Djava.security.policy=/home/sreddy/UTest/policy QueryManager "+qmlocation + " "+portNo+ " " +dsmlocation+ "
"+name+ " " +pwd;

 System.out.println("Trying to start QM :"+qmlocation);
 if(qmlocation.equalsIgnoreCase("magellan"))
 {
 System.out.println("Printing status " +qm_status);
 p1 = Runtime.getRuntime().exec(cmd4);
 QMprocessList.put(fullLocn, p1);
 qm_status = 0;
 stdErr2 = new BufferedInputStream(p1.getErrorStream());
 stdOut2 = new BufferedInputStream(p1.getInputStream());
 errThread2 = new StreamThread(stdErr2, errBuff2, mon2);
 outThread2 = new StreamThread(stdOut2, outBuff2, mon2);
 errThread2.start();
 outThread2.start();
 }
 else

 117

 {
 System.out.println("Invalid Location");
 }
 if (qm_status == 0)
 {
 System.out.println("Process Completion Time: "
+System.currentTimeMillis());
 System.out.println("QM Started");
 QMUtilization(fullLocn);
 }
 else
 System.out.println("Error in starting the QM");

 } catch(Exception e)
 {
 System.out.println("Error...."+e.getMessage());
 e.printStackTrace();
 }
 return(qm_status);
 }

 // to kill QM
 public int stopQM(String qmlocation)
 {
 int qm_status1 = -1;
 try
 {
 Enumeration e = QMprocessList.keys();

 while(e.hasMoreElements())
 {
 String locn = (String) e.nextElement();
 System.out.println(" QM process is " +locn+" and qmlocn is " +qmlocation);
 if(locn.equalsIgnoreCase(qmlocation))
 {
 System.out.println(" Destroying QM process " +qmlocation);
 Process p2 = (Process) QMprocessList.get(locn);
 p2.destroy();
 qm_status1 = 0;
 break;
 }
 }
 if (qm_status1==0)
 {
 //to delete the dsmid from the database table
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 String sqlstmt = null;
 sqlstmt = "delete from qm where qmid = '"+qmlocation+"'";
 statement.executeQuery("delete from qm where qmid = '"+qmlocation+"'");
 statement.close();
 dbconn.close();
 System.out.println("Query executed");
 }
 }catch(Exception ex3)
 {
 ex3.printStackTrace();
 }

 118

 return(qm_status1);
 }

 // to start System Integrator Proxy
 public int startSI()
 {
 int si_status = -1;
 int portNo = 2500;
 String qmlocation = "2000";
 Process p1 = null, p2 = null;
 StringBuffer outBuff5 = new StringBuffer();
 StringBuffer errBuff5 = new StringBuffer();
 StreamThread outThread5;
 StreamThread errThread5;
 BufferedInputStream stdOut5 = null;
 BufferedInputStream stdErr5 = null;
 try
 {
 Integer temp = new Integer(portNo);

 String fullLocn = "//magellan.cs.iupui.edu:"+temp.toString()+"/URDS_Proxy1";
 System.out.println("Initial Time: " +System.currentTimeMillis());
 ErrMonitor mon5 = new ErrMonitor();
 String cmd4 = "java -Xmx100m -Djava.security.policy=policy URDS_Proxy1
"+portNo+ " " +qmlocation;

 if(temp!=null && qmlocation!=null)
 {
 System.out.println("Trying to start System Integrator :"+fullLocn);
 System.out.println("Printing status " +si_status);
 p1 = Runtime.getRuntime().exec(cmd4);
 SIprocessList.put(fullLocn, p1);
 si_status = 0;
 stdErr5 = new BufferedInputStream(p1.getErrorStream());
 stdOut5 = new BufferedInputStream(p1.getInputStream());
 errThread5 = new StreamThread(stdErr5, errBuff5, mon5);
 outThread5 = new StreamThread(stdOut5, outBuff5, mon5);
 errThread5.start();
 outThread5.start();
 }

 if (si_status == 0)
 {
 System.out.println("Process Completion Time: "
+System.currentTimeMillis());
 System.out.println("System Integrator Started");
 }
 else
 System.out.println("Error in starting the System Integrator");

 } catch(Exception e)
 {
 System.out.println("Error...."+e.getMessage());
 e.printStackTrace();
 }
 return(si_status);
 }

 119

 //For starting Utlization Thread for QM
 public void QMUtilization(String qmLocation)
 {
 // Thread for HHutilThread
 try
 {
 QMutilThread qmThreadObj = new QMutilThread(this, qmLocation);
 Thread qmThread = new Thread(qmThreadObj);

 Thread.sleep(10000);
 qmThread.start();
 }
 catch (Exception e1)
 {
 System.out.println("\n#### ERROR in QMUtilThread Starting: " + e1.getMessage());
 e1.printStackTrace();
 }
 }
 //to update the qmutList for QM
 public void updateQMutilList(float hhUper)
 {
 Float ff = new Float(hhUper);
 if(ff!=null)
 {
 qmutList.add(ff);
 }
 }

 //called to retrieve the LinkedList of the util%
 public ArrayList getQMutilList()
 {
 return qmutList;
 }

 //For starting Utilization Thread for each HH
 public void HHUtilization(String hhLocation)
 {
 // Thread for HHutilThread
 try
 {
 HHutilThread hhThreadObj = new HHutilThread(this, hhLocation);
 Thread hhThread = new Thread(hhThreadObj);

 Thread.sleep(10000);
 hhThread.start();
 ArrayList hhutList = new ArrayList();
 StoreHHList.put(hhLocation, hhutList);
 }
 catch (Exception e)
 {
 System.out.println("\n#### ERROR in HHUtilThread Starting: " + e.getMessage());
 e.printStackTrace();
 }
 }

 //to update the hhutList for each HH
 public void updateHHutilList(String hhID, float hhUper)
 {
 Float ff = new Float(hhUper);
 Enumeration e = StoreHHList.keys();

 120

 ArrayList hhutList1 = new ArrayList();
 while(e.hasMoreElements())
 {
 String id = (String) e.nextElement();
 if(id.equals(hhID))
 {
 hhutList1 = (ArrayList)StoreHHList.get(id);
 hhutList1.add(ff);
 break;
 }
 }
 }

 //called to retrieve the LinkedList of the util%
 public ArrayList getHHutilList(String hhLoc)
 {
 ArrayList hhutList2 = new ArrayList();
 Enumeration e1 = StoreHHList.keys();
 String id1 = "";

 while(e1.hasMoreElements())
 {
 id1 = (String) e1.nextElement();
 if(id1.equals(hhLoc))
 {
 hhutList2 = (ArrayList)StoreHHList.get(id1);
 break;
 }
 }
 return hhutList2;
 }

 // to submit a query for processing
 public int submitQuery(String cName, long reTime)
 {
 int stat = 0;
 try
 {
 System.out.println("before lookup URDS Proxy1");
 String proxyLocation = "//magellan.cs.iupui.edu:2500/URDS_Proxy1";
 urdsProxy = (IURDS_Proxy1) Naming.lookup(proxyLocation);
 System.out.println("URDS Proxy1");
 urdsProxy.searchConcreteComponents(cName, reTime);
 }
 catch(Exception ex6)
 {
 ex6.printStackTrace();
 return(-1);
 }
 return (stat);

 }

 // to collect message traffic information
 public ArrayList messageTraffic()
 {
 ArrayList list1 = new ArrayList();

 try
 {
 obj4 = (IMsgTraffic)Naming.lookup("//magellan.cs.iupui.edu:9880/MsgTraffic");

 121

 list1.clear();
 list1 = obj4.getTraffic();
 }
 catch (Exception ex7)
 {
 System.out.println("Error in messageTraffic"+ex7.getMessage());
 }
 return list1;
 }

 // find the no. of processing
 public int QueueSize()
 {
 int i = 0;
 try
 {
 qm = (IQueryManager)Naming.lookup("//magellan.cs.iupui.edu:2000/QueryManager");
 i = qm.queueSize();
 }
 catch (Exception ex8)
 {
 System.out.println("Error in QueueSize"+ex8.getMessage());
 }
 return i;
 }
}

MsgTraffic.java
/**
 * This class collects the traffic information of the URDS.
 *
 * @author Srikanth Reddy
 * @date Jan 2005
 */

import java.net.*;
import java.util.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.lang.*;
import java.io.*;
import java.sql.*;

public class MsgTraffic extends UnicastRemoteObject implements IMsgTraffic
{
 private static Integer auth = new Integer(0);
 private static Integer query = new Integer(0);
 private static Integer comp = new Integer(0);
 private static int a=0, b=0, c=0;

 public MsgTraffic() throws RemoteException {

 // Thread for MsgTrafficThread
 try
 {
 MsgTrafficThread ThreadObj = new MsgTrafficThread(this);
 Thread TraThread = new Thread(ThreadObj);

 Thread.sleep(10000);

 122

 TraThread.start();
 }
 catch (Exception e1)
 {
 System.out.println("\n#### ERROR in MsgTrafficThread Starting: " + e1.getMessage());
 e1.printStackTrace();
 }

 }

 public static void main(String[] args)
 {
 String msgTrafficLocation="//magellan.cs.iupui.edu:9880/MsgTraffic";
 try
 {
 System.setSecurityManager(new RMISecurityManager());
 Naming.rebind(msgTrafficLocation, new MsgTraffic());
 System.out.println("MsgTraffic " + msgTrafficLocation + " is ready.");
 }catch(Exception e)
 {
 System.out.println("MsgTraffic failed: " + e);
 }
 }

 public void AuthenticateIN()
 {
 synchronized(auth)
 {
 a++;
 }
 System.out.println("increment value of a "+a);
 return;
 }

 public void AuthenticateOUT()
 {
 synchronized(auth)
 {
 a--;
 }
 System.out.println("decrement value of a "+a);
 return;
 }

 public void QueryIN()
 {
 synchronized(query)
 {
 b++;
 }
 System.out.println("increment value of b "+b);
 return;
 }

 public void QueryOUT()
 {
 synchronized(query)
 {
 b--;
 }
 System.out.println("decrement value of b "+b);

 123

 return;
 }

 public void ComponentIN()
 {
 synchronized(comp)
 {
 c++;
 }
 System.out.println("increment value of c "+c);
 return;
 }

 public void ComponentOUT()
 {
 synchronized(comp)
 {
 c--;
 }
 System.out.println("decrement value of c "+c);
 return;
 }

 //will be called by Monitor.java
 public ArrayList getTraffic()
 {
 ArrayList list = new ArrayList();

 list.clear();

 Integer a1 = new Integer(a);
 Integer b1 = new Integer(b);
 Integer c1 = new Integer(c);

 list.add(a1);
 list.add(b1);
 list.add(c1);

 return list;
 }
}

HHutilThread.java
/**
 * This thread periodically computes the HH utilization percentage.
 *
 * @author Srikanth Reddy
 * @date Jan 2005
 */

import java.security.*;
import java.util.*;
import java.lang.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class HHutilThread implements Runnable
{
 private IHeadhunter utilHH = null;

 124

 private Monitor mm = null;
 private String hhLocation = "";
 private long sleepTime = 60000; // Time for which the thread

 public void run()
 {
 Thread CurrentThread = Thread.currentThread();

 double util_netTime1 = 0;
 double util_stopTime1 = 0;
 float utilper1 = -1;
 double util_startTime1 = 0;
 try
 {
 CurrentThread.sleep(20000);
 System.out.println("printing hhLocation in HHutilThread "+ hhLocation);
 utilHH = (IHeadhunter)Naming.lookup(hhLocation);
 }
 catch(Exception e1)
 {
 System.out.println("error in lookup HH "+e1.getMessage());
 try
 {
 mm.setError("Error in HHUtilLookup " +e1.getMessage());
 }
 catch(Exception e)
 {
 System.out.println("Caught some exception ");
 }
 }

 while(true)
 {
 util_netTime1 = 0;
 util_stopTime1 = 0;
 util_startTime1 = 0;
 try
 {
 util_startTime1 = System.currentTimeMillis();
 utilHH.HHutilStart();
 System.out.println("Printing Start Time of HH " + util_startTime1);
 // sleep for some time to record the utilization of HH
 CurrentThread.sleep(sleepTime);
 util_netTime1 = utilHH.HHutilStop();
 util_stopTime1 = System.currentTimeMillis();
 double totalTime1 = util_stopTime1 - util_startTime1;
 utilper1 = (float)(util_netTime1 / totalTime1) * 100 ;
 System.out.println("Printing Utilization Percentage of HH " + utilper1);

 if(utilper1<=100)
 {
 // to update the table in Monitor
 mm.updateHHutilList(hhLocation, utilper1);
 }
 }
 catch(Exception ex5)
 {
 try
 {
 mm.setError("Error in HHUtilLookup loc2 "+ex5.getMessage());
 }

 125

 catch(Exception e)
 {
 System.out.println("error here in hhutil "+e.getMessage());
 }
 System.out.println("Caught some exception ");
 }
 }
 }

 public HHutilThread(Monitor mon, String hhLoc)
 {
 try
 {
 mm = mon;
 hhLocation = hhLoc;
 }
 catch (Exception e)
 {
 System.out.println("#### ERROR in HHutilThread constructor: " + e);
 e.printStackTrace();
 System.exit(1);
 }
 }
}

QMutilThread.java
/**
 * This thread periodically computes the QM utilization percentage.
 *
 * @author Srikanth Reddy
 * @date Jan 2005
 */

import java.security.*;
import java.util.*;
import java.lang.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class QMutilThread implements Runnable
{
 private IQueryManager utilQM = null;
 private Monitor mm1 = null;
 private String qmLocation = "";
 private long sleepTime = 60000; // Time for which the thread

 public void run()
 {
 Thread CurrentThread = Thread.currentThread();

 double util_netTime = 0;
 double util_stopTime = 0;
 float utilper = -1;
 double util_startTime = 0;
 try
 {
 System.out.println("printing qmLocation "+ qmLocation);
 utilQM = (IQueryManager)Naming.lookup(qmLocation);

 126

 }
 catch(Exception e2)
 {
 System.out.println("error in lookup "+e2.getMessage());
 }

 while(true)
 {
 util_netTime = 0;
 util_stopTime = 0;
 util_startTime = 0;
 try
 {
 util_startTime = System.currentTimeMillis();
 utilQM.QMutilStart();
 System.out.println("Printing Start Time of QM " + util_startTime);

 // sleep for some time to record the utilization of QM
 CurrentThread.sleep(sleepTime);
 util_netTime = utilQM.QMutilStop();
 util_stopTime = System.currentTimeMillis();
 System.out.println("Printing Stop Time of QM " + util_stopTime);
 double totalTime = util_stopTime - util_startTime;
 System.out.println("Printing Net Time of QM " + util_netTime);
 utilper = (float)(util_netTime / totalTime) * 100 ;
 System.out.println("Printing Utilization Percentage of QM " + utilper);

 if(utilper<=100)
 {
 // to update the table in Monitor
 mm1.updateQMutilList(utilper);
 }
 }
 catch(Exception ex5)
 {
 try
 {
 mm1.setError(ex5.getMessage());
 }
 catch(Exception e1)
 {
 System.out.println("Caught some exception ");
 }
 ex5.printStackTrace();
 }
 }
 }

 public QMutilThread(Monitor mon, String qmLoc)
 {
 try
 {
 mm1 = mon;
 qmLocation = qmLoc;
 }
 catch (Exception e)
 {
 System.out.println("#### ERROR in QMutilThread constructor: " + e);
 e.printStackTrace();
 System.exit(1);
 }

 127

 }
}

StreamThread.java
/**
 * This class stores the monitoring information in a StringBuffer.
 *
 * @author Srikanth Reddy
 * @date Jan 2005
 */

import java.io.*;
import java.util.*;

public class StreamThread extends Thread
{
 BufferedInputStream stream;
 StringBuffer buff;
 ErrMonitor mon;
 StreamThread(BufferedInputStream in, StringBuffer buf, ErrMonitor m)
 {
 stream = in;
 buff = buf;
 mon = m;
 }
 public void run()
 {
 try
 {
 int i;
 yield();
 while((i = stream.read()) > -1)
 {
 buff.append((char)i);
 }
 mon.notifyWaiter();
 }
 catch (Exception ioe)
 {
 System.out.println("thread exception "+ioe.getMessage());
 ioe.printStackTrace();
 }
 }
}

ErrMonitor.java
/**
 * This class collects the error messages.
 *
 * @author Srikanth Reddy
 * @date Jan 2005
 */

import java.io.*;

class ErrMonitor
{

 128

 public ErrMonitor()
 {}

 synchronized public void waitForNotify()
 {
 try
 {
 wait();
 }
 catch(InterruptedException e) {}
 }
 synchronized public void notifyWaiter()
 {
 notify();
 }
}

RMIHelper.java
/**
 * This is a helper class between the JSP pages and the RMI classes.
 *
 * @author Srikanth Reddy
 * @date Jan 2005
 */

import java.util.*;
import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class RMIHelper {

 private IMonitor monitor = null;

 public RMIHelper()
 {
 try
 {
 String monitorlocation ="//magellan.cs.iupui.edu:9879/Monitor";
 monitor = (IMonitor) Naming.lookup(monitorlocation);
 } catch (Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
 public int startDSM(String dsmaddress, int portNo)
 {
 int status = -1;
 try
 {
 status = monitor.startDSM(dsmaddress, portNo);

 } catch (Exception e1)
 {
 System.out.println(e1.getMessage());
 }
 return(status);
}

 129

public int startHH(String hhaddress, int portNo, String dsmaddress, String domain, String name, String pwd)
{
 int hh_status = -1;
 try
 {
 hh_status = monitor.startHH(hhaddress, portNo, dsmaddress, domain, name, pwd);
 }catch (Exception e2)
 {
 System.out.println(e2.getMessage());
 }
 return(hh_status);
}

public int startAR(String araddress, int portNo, int coportNo, String dsmaddress, String domain, String name, String
pwd)
{
 int ar_status = -1;
 try
 {
 ar_status = monitor.startAR(araddress, portNo, coportNo, dsmaddress, domain, name, pwd);
 }catch (Exception e3)
 {
 System.out.println(e3.getMessage());
 }
 return(ar_status);
 }

 public int startQM(String qmaddress, int portNo, String dsmaddress, String name, String pwd)
 {
 int qm_status = -1;
 try
 {
 qm_status = monitor.startQM(qmaddress, portNo, dsmaddress, name, pwd);
 }catch (Exception e4)
 {
 System.out.println(e4.getMessage());
 }
 return(qm_status);
 }

 public int startSI()
 {
 int si_status = -1;
 try
 {
 si_status = monitor.startSI();
 }catch (Exception e13)
 {
 System.out.println(e13.getMessage());
 }
 return(si_status);
 }

public int stopDSM(String dsmlocn)
{
 int dsm_status = -1;
 try
 {
 dsm_status = monitor.stopDSM(dsmlocn);
 }catch (Exception e5)
 {

 130

 System.out.println(e5.getMessage());
 }
 return(dsm_status);
 }

 public int stopHH(String hhlocn)
 {
 int hh_status = -1;
 try
 {
 hh_status = monitor.stopHH(hhlocn);
 }catch (Exception e6)
 {
 System.out.println(e6.getMessage());
 }
 return(hh_status);
 }

 public int stopAR(String arlocn)
 {
 int ar_status = -1;
 try
 {
 ar_status = monitor.stopAR(arlocn);
 }catch (Exception e7)
 {
 System.out.println(e7.getMessage());
 }
 return(ar_status);
 }

 public int stopQM(String qmlocn)
 {
 int qm_status = -1;
 try
 {
 qm_status = monitor.stopQM(qmlocn);
 }catch (Exception e8)
 {
 System.out.println(e8.getMessage());
 }
 return(qm_status);
 }

 public StringBuffer getError()
 {
 try
 {
 StringBuffer errorbuf = (StringBuffer)monitor.getError();
 return errorbuf;
 }
 catch(Exception e)
 {
 return null;
 }

 }

 public ArrayList QMUtil()
 {
 ArrayList upercent_qm = new ArrayList();

 131

 try
 {
 upercent_qm = monitor.getQMutilList();

 }catch (Exception e9)
 {
 System.out.println(e9.getMessage());
 }
 return(upercent_qm);
 }

 public ArrayList HHUtil(String hhLocn)
 {
 ArrayList upercent_hh = new ArrayList();
 try
 {
 upercent_hh = monitor.getHHutilList(hhLocn);

 }catch (Exception e10)
 {
 System.out.println(e10.getMessage());
 }
 return upercent_hh;
 }

 public int subQuery(String compName, long respTime)
 {
 int stat = -1;
 try
 {
 stat = monitor.submitQuery(compName, respTime);
 }catch (Exception e11)
 {
 System.out.println(e11.getMessage());
 }
 return(stat);
 }

 public ArrayList msgTraffic()
 {
 ArrayList list2 = new ArrayList();
 try
 {
 list2 = monitor.messageTraffic();
 }catch(Exception e12)
 {
 System.out.println(e12.getMessage());
 }
 return list2;
 }

 public int queSize()
 {
 int k = 0;
 try
 {
 k = monitor.QueueSize();
 }catch(Exception e14)
 {
 System.out.println(e14.getMessage());
 }

 132

 return k;
 }
}

URDS_Proxy1.java
import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
import java.net.*;
import java.util.*;
import java.sql.*;

/**
 * This class implements the URDS_Proxy in URDSMMS to interface with URDS.
 *
 * @author Barun Devaraju
 * @modified Srikanth Reddy
 * @date Dec 2004
 */

public class URDS_Proxy1 extends UnicastRemoteObject implements IURDS_Proxy1
{
 private boolean timedExperiment = false;

 private IQueryManager queryManager = null;
 AbstractComponent component = new AbstractComponent();
 private QueryBean queryBean = null;
 private long responseTime = 400000;
 private int totalQueries=1; // total no of queries sent at once
 private int queriesSent=0;
 private int resultsReceived=0;
 private int experimentNumber = 1; // no of times the experiment is repeated
 private int experimentDone = 0;
 private String domainName = "Document";
 private String location = null;
 private Timer timer = null;
 private long interval = 200;
 private IMsgTraffic obj2 = null;
 private IMonitor mon = null;

 public URDS_Proxy1(String qmPort, String url) throws RemoteException
 {
 try
 {
 location = url;
 queryManager =(IQueryManager)Naming.lookup("//magellan.cs.iupui.edu:" + qmPort + "/QueryManager");
 obj2 = (IMsgTraffic)Naming.lookup("//magellan.cs.iupui.edu:9880/MsgTraffic");
 mon = (IMonitor)Naming.lookup("//magellan.cs.iupui.edu:9879/Monitor");
 }
 catch(RemoteException e)
 {
 System.err.println(e);
 }
 catch(NotBoundException e)
 {
 System.err.println(e);
 }
 catch(MalformedURLException e)
 {

 133

 System.err.println(e);
 }

 }

 // to submit new query
 public void newQuery(String compName, long respTime)
 {
 domainName = compName;
 responseTime = respTime;
 try
 {
 System.out.println("in new Query URDS_Proxy1");
 this.searchConcreteComponents(domainName, responseTime);
 }
 catch(RemoteException e)
 {
 System.err.println(e.getMessage());
 }
 }

 public void searchConcreteComponents(String coName, long resTime) throws RemoteException
 {
 domainName = coName;
 responseTime = resTime;

 component.setDomainName(domainName);
 // to search for document server only query through URDS
 if(queryManager == null)
 {
 System.out.println("Query Manager is not ready");
 }
 else
 {
 queryBean = new QueryBean(component);
 queriesSent = 0;
 resultsReceived = 0;
 if(timedExperiment)
 {
 //System.out.println("Timer scheduled for interval " + interval);
 }
 else
 {
 while(queriesSent < totalQueries)
 {
 try
 {
 obj2.QueryIN();
 queryManager.getSearchResultTable(queryBean, responseTime, location);
 queriesSent++;
 System.out.println(">>>> Query " + queriesSent + " sent at "
+System.currentTimeMillis());
 }
 catch(Exception e)
 {
 try
 {
 mon.setError(e.getMessage());
 }
 catch(Exception e1)
 {

 134

 System.out.println("Caught some exception ");
 }
 System.out.println("#### ERROR in contacting Query Manager and getting
results ");
 }
 }
 System.out.println("Totally " + queriesSent + " queries sent");
 }
 }
 }

 // Called when the results are available
 public int obtainResults(String queryID, Hashtable result)
 {
 try
 {
 obj2.QueryOUT();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }

 resultsReceived++;
 System.out.println("URDS_Proxy1: Result Size - " + result.size());
 try
 {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();

 if(result != null)
 {
 Enumeration values = result.keys();
 while(values.hasMoreElements())
 {
 String componentID = (String)values.nextElement();
 ComponentDetailsObject cdo = (ComponentDetailsObject)
result.get(componentID);
 System.out.println(componentID
+"\t"+cdo.getConcreteComponent().getComponentName()+"\t"+cdo.getComponentRating());
 statement.executeQuery("insert into urdsresults values
('"+queryID+"', '"+componentID+"','"+cdo.getConcreteComponent().getComponentName()+"',
"+cdo.getComponentRating()+")");
 }

 if(result.size()==0)
 {
 System.out.println(" ----- No component matched for Query " +
queryID);
 }

 System.out.println("URDS Proxy obtanied results for the query " + queryID);
 System.out.println("------------- END --------------- " + resultsReceived + " " +
queriesSent + " " + totalQueries +" "+System.currentTimeMillis());
 }
 obj2.QueryIN();
 statement.close();

 135

 dbconn.close();
 }
 catch (Exception e1)
 {
 try
 {
 mon.setError(e1.getMessage());
 }
 catch(Exception e2)
 {
 System.out.println("Caught some exception ");
 }

 System.out.println("Exception at obtainresults");
 }

 return 0;
 }

 public static void main(String[] args)
 {
 String url = null;
 String qmPort = null;

 if(args.length > 2)
 {
 System.out.println("Usage: java URDS_Proxy1 server_name responseTime");
 }

 if(args.length == 0)
 {
 url = "//magellan.cs.iupui.edu:2500/URDS_Proxy1";
 }
 else
 {
 url = "//magellan.cs.iupui.edu:" + args[0] + "/URDS_Proxy1";
 }

 if(args.length == 1)
 {
 qmPort = "2000";
 }
 else
 {
 qmPort = args[1];
 }

 try
 {
 URDS_Proxy1 urds_Proxy= new URDS_Proxy1(qmPort, url);
 Naming.rebind(url, urds_Proxy);
 System.out.println("URDS_Proxy1 is registered in location " + url);
 System.out.println("URDS Proxy started");
 }
 catch(RemoteException e)
 {
 System.err.println(e.getMessage());
 }
 catch(MalformedURLException e)
 {
 System.err.println(e.getMessage());

 136

 }
 catch(Exception e)
 {
 System.err.println(e);
 System.exit(1);
 }
 }
}

JSP Code

main.jsp
<html>

<head>
<title> URDS Monitoring and Management System </title>
<link rel="stylesheet" href="web.css" type="text/css">
<base target="_self">
</head>

<body bgcolor="#FFFFFF" text="#000000">
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td align="center">
 </td>
 </tr>
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<p>

<h3>
<center>
<%!
 int first = 1;
%>
<%
 Boolean authenflag = (Boolean) request.getAttribute("authenflag");
 if(authenflag == null ||first == 1)
 {
 first = 0;
 }
 else
 {
%>
 Authentication failed. Please re-enter User name and Password.
<%
 }
%>
</center>
</h3>
</p>
<form name="MainPage" action="process2.jsp" method = "post" >

 137

 <table border="1" bgcolor="#C0C0C0">
 <tr>
 <td>
 Username
 </td>
 <td align="center">
 <input type="text" name="username">
 </td>
 </tr>
<tr>
 <td>
 Password
 </td>
 <td align="center">
 <input type="password" name="password">
 </td>
</tr>

</table>

<input type="submit" name="MainPage" value="Login">

 help?
</form>

<table>
 <tr>
 <td>
 </td>
 </tr>
</table>
</center>
</body>
</html>

process2.jsp
<%@ page import="java.util.*, java.lang.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>

<jsp:useBean id="idHandler" class="security.Login" scope="request">
<jsp:setProperty name="idHandler" property="*"/>
</jsp:useBean>

<% if (idHandler.authenticate((String)request.getParameter("username"), (String)request.getParameter("password")))
 {
 if(request.getParameter("MainPage") != null)
 {
 String st1 = (String) request.getParameter("username").trim();
 if(st1.equals("admin"))
 {
%>
 <jsp:forward page="first.htm"/>
<% }
 else if(st1.equals("user"))
 {
%>
 <jsp:forward page="first_si.htm"/>
<%

 138

 }
 }
 }
 else
 {
 Boolean authenflag = new Boolean("true");
 request.setAttribute("authenflag", authenflag);
%>
 <jsp:forward page="main.jsp"/>
<%
 }
%>

Monitor.jsp
/**
 * This JSP page collects the statistical details of the URDS.
 *
 * @author Srikanth Reddy
 * @date Feb 2005
 */

<%@ page language="java" import="java.sql.*, RMIHelper" %>
<%@ page import="java.util.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<%
 RMIHelper obj2 = new RMIHelper();
 int j = 0;
 j = obj2.queSize();
%>

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #F8F7D9>

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
%>
 <table width="550" border="0" cellspacing="1" cellpadding="0">
 <tr>
 <td bgcolor="#800000" height="30" colspan="5" align="center" bordercolor="#C0C0C0" >

 Global Snapshot of URDS

 </td>
 </tr>
 <%
 ResultSet rst = statement.executeQuery("select * from dsm");
 String dsmval="";
 String dsmname = "Domain Security Manager";
 %>
 <tr>
 <td height="28">
 <%=dsmname%>
 </td>
 <%

 139

 while(rst.next())
 {
 dsmval=rst.getString("DSMID");
 }
 %>
 <td height="28">
 <% if (dsmval != "")
 { %>

 <%=dsmval%>

 <% }
 else
 { %>
 No Active DSM
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst1 = statement.executeQuery("select * from qm");
 String qmval="";
 String qmname = "Query Manager";

 while(rst1.next())
 {
 qmval=rst.getString("QMID");
 }
 %>
 <tr>
 <td height = "28">
 <%=qmname%>
 </td>

 <td height = "28">
 <% if (qmval != "")
 { %>
 <%=qmval%>

 <% }
 else
 { %>
 No Active QM
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst2 = statement.executeQuery("SELECT COUNT(*) as HHNO FROM HH");
 int hhno= 0;
 String hhname = "No of Headhunters Active";

 while(rst2.next())
 {
 hhno = rst2.getInt("HHNO");
 }
 %>

 140

 <tr>
 <td height = "28">
 <%=hhname%>
 </td>

 <td height = "28">
 <% if (hhno != 0)
 { %>
 <%=hhno%>

 <% }
 else
 { %>
 No Active HHs
 <% } %>
 </td>
 </tr>
 <tr>
 <td>

 Display Details

 </td>
 </tr>

 <%
 ResultSet rst3 = statement.executeQuery("SELECT COUNT(*) as ARNO FROM AR");
 int arno= 0;
 String arname = "No of Active Registries Active";

 while(rst3.next())
 {
 arno = rst3.getInt("ARNO");
 }
 %>

 <tr>
 <td height = "19">
 <%=arname%>
 </td>

 <td height = "19">
 <% if (arno != 0)
 { %>
 <%=arno%>

 <% }
 else
 { %>
 No Active ARs
 <% } %>
 </td>
 </tr>
 <tr>
 <td>

 Display Details

 </td>

 141

 </tr>
 <tr>
 <td height = "19">
 No. of Queries being processed:
 </td>
 <td height = "19">
 <%=j%>
 </td>
 </tr>
<%
 statement.close();
 dbconn.close();
%>
</table>
</body>
</html>

Monitor_hh_details.jsp
/**
 * This JSP page collects the details of all the HHs.
 *
 * @author Srikanth Reddy
 * @date Feb 2005
 */

<%@ page language="java" import="java.sql.*, RMIHelper" %>
<%@ page import="java.util.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper obj2 = new RMIHelper();
 int j = -1;
 j = obj2.queSize();
%>

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #F8F7D9>

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
%>
 <table width="550" border="0" cellspacing="1" cellpadding="0" height="84">
 <tr>
 <td bgcolor="#800000" height="30" colspan="5" align="center" bordercolor="#C0C0C0" >

 Global Snapshot of URDS

 </td>
 </tr>
 <%
 ResultSet rst = statement.executeQuery("select * from dsm");
 String dsmval="";
 String dsmname = "Domain Security Manager";

 142

 while(rst.next())
 {
 dsmval=rst.getString("DSMID");
 }
 %>
 <tr>
 <td height="28" width="333">
 <%=dsmname%>
 </td>

 <td height="28" width="364">
 <% if (dsmval != "")
 { %>

 <%=dsmval%>

 <% }
 else
 { %>

 No Active DSM

 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst1 = statement.executeQuery("select * from qm");
 String qmval="";
 String qmname = "Query Manager";

 while(rst1.next())
 {
 qmval=rst.getString("QMID");
 }
 %>
 <tr>
 <td height = "28" width="333">
 <%=qmname%>
 </td>

 <td height = "28" width="364">
 <% if (qmval != "")
 { %>
 <%=qmval%>

 <% }
 else
 { %>
 No Active QM
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst2 = statement.executeQuery("SELECT COUNT(*) as HHNO FROM HH");
 int hhno= 0;

 143

 String hhname = "No of Headhunters Active";

 while(rst2.next())
 {
 hhno = rst2.getInt("HHNO");
 }
 %>

 <tr>
 <td height = "28" width="333">
 <%=hhname%>
 </td>

 <td height = "28" width="364">
 <% if (hhno != 0)
 { %>
 <%=hhno%>

 <% }
 else
 { %>
 No Active HHs
 <% } %>
 </td>
 </tr>

 <tr>
 <td>

 Hide Details

 </td>
 </tr>
 </table>
 <%
 ResultSet rst3 = statement.executeQuery("SELECT * FROM HH ORDER BY RATING DESC");
 String hhdetail= "";
 String hhid="";
 String hhdomain="";
 String rating ="";
 %>
 <table border="1" bgcolor="#C0C0C0">
 <tr bgcolor="#808080">
 <td align="center">
 Headhunter Name
 </td>
 <td align="center">
 Headhunter Id
 </td>
 <td align="center">
 Domain
 </td>
 <td align="center">
 Rating
 </td>

 </tr>
 <%
 while(rst3.next())
 {

 144

 hhdetail = rst3.getString("HHNAME");
 hhid = rst3.getString("HHID");
 hhdomain = rst3.getString("DOMAIN");
 rating = rst3.getString("RATING");
 %>
 <tr>
 <td>
 <%=hhdetail%>
 </td>
 <td>
 <%=hhid%>
 </td>
 <td>
 <%=hhdomain%>
 </td>
 <td>
 <%=rating%>
 </td>

 </tr>

 <%
 } //while
 %>
 </table>

 <%
 ResultSet rst4 = statement.executeQuery("SELECT COUNT(*) as ARNO FROM AR");
 int arno= 0;
 String arname = "No of Active Registries Active";

 while(rst4.next())
 {
 arno = rst4.getInt("ARNO");
 }
 %>
 <table>
 <tr>
 <td height = "28">
 <%=arname%>
 </td>

 <td height = "28">
 <% if (arno != 0)
 { %>
 <%=arno%>

 <% }
 else
 { %>
 No Active ARs
 <% } %>
 </td>
 </tr>

 <tr>
 <td>

 Display Details

 145

 </td>
 </tr>

 <tr>
 <td height = "28">
 No. of Queries being processed:
 </td>
 <td height = "28">
 <%=j%>
 </td>
 </tr>
<%
 statement.close();
 dbconn.close();
%>
</table>
</body>
</html>

Monitor_ar_details.jsp
/**
 * This JSP page collects the details of all the ARs.
 *
 * @author Srikanth Reddy
 * @date Feb 2005
 */
<%@ page language="java" import="java.sql.*, RMIHelper" %>
<%@ page import="java.util.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper obj2 = new RMIHelper();
 int j = -1;
 j = obj2.queSize();
%>

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #F8F7D9>

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
%>
 <table width="550" border="0" cellspacing="1" cellpadding="0" height="84">
 <tr>
 <td bgcolor="#800000" height="30" colspan="5" align="center" bordercolor="#C0C0C0" >

 Global Snapshot of URDS

 </td>
 </tr>
 <%
 ResultSet rst = statement.executeQuery("select * from dsm");
 String dsmval="";
 String dsmname = "Domain Security Manager";

 146

 while(rst.next())
 {
 dsmval=rst.getString("DSMID");
 }
 %>
 <tr>
 <td height="28">
 <%=dsmname%>
 </td>

 <td height="28">
 <% if (dsmval != "")
 { %>

 <%=dsmval%>

 <% }
 else
 { %>

 No Active DSM

 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst1 = statement.executeQuery("select * from qm");
 String qmval="";
 String qmname = "Query Manager";

 while(rst1.next())
 {
 qmval=rst.getString("QMID");
 }
 %>
 <tr>
 <td height = "28">
 <%=qmname%>
 </td>

 <td height = "28">
 <% if (qmval != "")
 { %>
 <%=qmval%>

 <% }
 else
 { %>
 No Active QM
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst2 = statement.executeQuery("SELECT COUNT(*) as HHNO FROM HH");
 int hhno= 0;

 147

 String hhname = "No of Headhunters Active";

 while(rst2.next())
 {
 hhno = rst2.getInt("HHNO");
 }
 %>

 <tr>
 <td height = "28">
 <%=hhname%>
 </td>

 <td height = "28">
 <% if (hhno != 0)
 { %>
 <%=hhno%>

 <% }
 else
 { %>
 No Active HHs
 <% } %>
 </td>
 </tr>
 <tr>
 <td>

 Display Details

 </td>
 </tr>

 <%
 ResultSet rst4 = statement.executeQuery("SELECT COUNT(*) as ARNO FROM AR");
 int arno= 0;
 String arname = "No of Active Registries Active";

 while(rst4.next())
 {
 arno = rst4.getInt("ARNO");
 }
 %>

 <tr>
 <td height = "28">
 <%=arname%>
 </td>

 <td height = "28">
 <% if (arno != 0)
 { %>
 <%=arno%>

 <% }
 else
 { %>
 No Active ARs
 <% } %>
 </td>

 148

 </tr>
 <tr>
 <td width="324">

 Hide Details

 </td>
 </tr>
 </table>
 <%
 ResultSet rst5 = statement.executeQuery("SELECT * FROM AR");
 String ardetail= "";
 String arid="";
 String ardomain = "";
 %>

 <table border="1" bgcolor="#C0C0C0">
 <tr bgcolor="#808080">
 <td align="center">
 Active Registry Name
 </td>
 <td align="center">
 Active Registry Id
 </td>
 <td>
 Domain
 </td>
 </tr>

 <%
 while(rst5.next())
 {
 ardetail = rst5.getString("ARNAME");
 arid = rst5.getString("ARID");
 ardomain = rst5.getString("DOMAIN");
 %>
 <tr>
 <td>
 <%=ardetail%>
 </td>

 <td>
 <%=arid%>
 </td>

 <td>
 <%=ardomain%>
 </td>
 </tr>

<%
 } //while
%>
</table>
<table>
 <tr>
 <td height = "28">
 No. of Queries being processed:
 </td>

 149

 <td height = "28">
 <%=j%>
 </td>
 </tr>
<%
 statement.close();
 dbconn.close();
%>
</table>
</body>
</html>

HHUtilization.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>

<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<form name="utilHH" method="post" action="processHHUtil.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Utilization of Headhunter</p>
</tr>

<tr valign="center">

 <td height="21" colspan="2">Select Headhunter's Location</td>

 <td valign="top" colspan="4" height="21" width="478">
 <select name="hhLocation">

<%
 try
 {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select hhid from hh");
 System.out.println("Query executed");
 String hhlist="";

 while(rst.next())
 {
 hhlist=rst.getString("HHID");
%>
 <option value="<%= hhlist %>" > <%= hhlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
 }catch(Exception e)
 {
 System.out.println(e.getMessage());
 }

 150

%>

 </select></td>
</tr>

</table>

 <p align="center">
 <input type="submit" name="HHUtil" value="Get HH Utilization">
</p>
</form>

</body>
</html>

procssHHutil.jsp
<%@ page language="java" %>
<%@ page import="java.util.*, java.lang.*, java.text.*, RMIHelper, LineGraphTest1"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper obj1 = new RMIHelper();
 LineGraphTest1 obj2 = new LineGraphTest1();
 ArrayList utilPerList = new ArrayList();
 java.text.DecimalFormat df = new java.text.DecimalFormat("#0.00");
%>
<%
 if(request.getParameter("HHUtil")!=null)
 {
 String hhAddress = (String) request.getParameter("hhLocation");
 if(hhAddress != null)
 {
 try
 {
 utilPerList = obj1.HHUtil(hhAddress);
 System.out.println("before drawGraph()");
 obj2.main(utilPerList, hhAddress);
 Thread.sleep(2000);
 }
 catch(Exception e)
 {
 System.out.println("error is "+e.getMessage());
 e.printStackTrace();
 }
 }
 else
 {
%>
 <p> Invalid Headhunter Location </p>
<%
 }
 }
 else
 {
%>
 <p> Sorry, unable to determine at this time </p>
<%
 }
%>
<html>

 151

<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Headhunter Untilization</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">
<center>

 Headhunter's Utilization Graph

</center>
</body>
</html>

QMUtilization.jsp
<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #FFFFFF>
<form name="utilQM" method = "post" action="processQMUtil.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Utilization of Query Manager
</tr>
</table>
<p align="center">

 <input type="submit" name="QMUtil" value="Get QM Utilization">
</p>
</form>

</body>
</html>

processQMutil.jsp
<%@ page language="java" %>
<%@ page import="java.util.*, java.lang.*, java.text.*, RMIHelper, LineGraphTest2"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper obj1 = new RMIHelper();
 LineGraphTest2 obj2 = new LineGraphTest2();
 ArrayList utilPerList = new ArrayList();
 java.text.DecimalFormat df = new java.text.DecimalFormat("#0.00");
%>
<%
 try
 {
 String qmAddress = "//magellan.cs.iupui.edu:2000/QueryManager";
 utilPerList = obj1.QMUtil();

 152

 obj2.main(utilPerList, qmAddress);
 Thread.sleep(2000);
 }
 catch(Exception e)
 {
 System.out.println("Exception in processQMutil "+e.getMessage());
 }
%>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Query Manager Untilization</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">
<center>

 Query Manager's Utilization Graph

</center>
</body>
</html>

getTraffic.jsp
<%@ page import="java.util.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #F8F7D9>
 <table width="550" border="0" cellspacing="1" cellpadding="0">
 <tr>
 <td bgcolor="#800000" height="30" colspan="5" align="center" bordercolor="#C0C0C0" >

 Get Message Traffic

 </td>
 </tr>
 </table>

<form name="Traffic" method = "post" action="processgetTraffic.jsp" >
<p align="center">

 <input type="submit" name="getTraffic" value="Get Message Traffic">
</p>
</form>
</body>
</html>

 153

processgetTraffic.jsp
<%@ page language="java" %>
<%@ page import="java.util.*, java.lang.*, java.io.*, RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>
<%
RMIHelper obj1 = new RMIHelper();
ArrayList list3 = new ArrayList();

Integer a1 = null;
Integer b1 = null;
Integer c1 = null;
int a=0, b=0, c=0;
%>

<%
try
{
 list3 = obj1.msgTraffic();
 if (list3!=null && list3.size() ==3)
 {
 a1 = (Integer) list3.get(0);
 a = a1.intValue();
 b1 = (Integer) list3.get(1);
 b = b1.intValue();
 c1 = (Integer) list3.get(2);
 c = c1.intValue();
 }
 else
 {
 System.out.println("List is null");
 }
}
catch(Exception ex)
{
 System.out.println("Excp"+ex.getMessage());
}
%>

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>Message Traffic</title>
</head>

<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
if(list3!=null && list3.size()==3)
{
%>

<table border="1" bgcolor="#C0C0C0" width="550">
 <tr bgcolor="#808080">
 <td>
 Classification
 </td>
 <td>

 154

 No of Messages
 </td>
 <tr>
 <td height = "28" width="206">
 Authentication Messages
 </td>

 <td height = "28" width="349">
 <%=a%>
 </td>
 </tr>
 <tr>
 <td height = "28" width="206">
 Query Processing Messages
 </td>

 <td height = "28" width="349">
 <%=b%>
 </td>
 </tr>
 <tr>
 <td height = "28" width="206">
 Component Update
 </td>

 <td height = "28" width="349">
 <%=c%>
 </td>
 </tr>
</table>

<%
 }
 else
 {
%>
 <p> Sorry, unable to determine at this time </p>
<%
 }
%>

</center>
</body>
</html>

status.jsp
<%@ page language="java" import="java.sql.*, RMIHelper" %>
<%@ page import="java.util.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper obj2 = new RMIHelper();
 int j = 0;
 j = obj2.queSize();
%>

<html>
<head>
<META HTTP-EQUIV="Refresh" CONTENT="10; URL=http://magellan.cs.iupui.edu:8080/srikanth/jsp/status.jsp">
</head>

 155

<body bgcolor = #FFFFFF>

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
%>
 <table width="190" border="0" cellspacing="1" cellpadding="0">
 <tr>
 <td bgcolor="#800000" height="20" colspan="2" align="center" bordercolor="#C0C0C0" >

 URDS Snapshot

 </td>
 </tr>
 <%
 ResultSet rst = statement.executeQuery("select COUNT(*) as DSMNO from dsm");
 int dsmval=0;
 String dsmname = "DSM:";
 %>
 <tr>
 <td height="20">
 <%=dsmname%>
 </td>
 <%
 while(rst.next())
 {
 dsmval=rst.getInt("DSMNO");
 }
 %>
 <td height="20">
 <% if (dsmval != 0)
 { %>

 <%=dsmval%>

 <% }
 else
 { %>
 No Active DSM
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst1 = statement.executeQuery("select COUNT(*) as QMNO from qm");
 int qmval=0;
 String qmname = "QM";

 while(rst1.next())
 {
 //qmname=rst.getString("QMNAME");
 qmval=rst.getInt("QMNO");
 }
 %>
 <tr>
 <td height = "20">
 <%=qmname%>
 </td>

 156

 <td height = "20">
 <% if (qmval != 0)
 { %>
 <%=qmval%>

 <% }
 else
 { %>
 No Active QM
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst2 = statement.executeQuery("SELECT COUNT(*) as HHNO FROM HH");
 int hhno= 0;
 String hhname = "No of HHs:";

 while(rst2.next())
 {
 hhno = rst2.getInt("HHNO");
 }
 %>

 <tr>
 <td height = "20">
 <%=hhname%>
 </td>

 <td height = "20">
 <% if (hhno != 0)
 { %>
 <%=hhno%>

 <% }
 else
 { %>
 No Active HHs
 <% } %>
 </td>
 </tr>

 <%
 ResultSet rst3 = statement.executeQuery("SELECT COUNT(*) as ARNO FROM AR");
 int arno= 0;
 String arname = "No of ARs:";

 while(rst3.next())
 {
 arno = rst3.getInt("ARNO");
 }
 %>

 <tr>
 <td height = "20">
 <%=arname%>
 </td>

 <td height = "20">
 <% if (arno != 0)
 { %>

 157

 <%=arno%>

 <% }
 else
 { %>
 No Active ARs
 <% } %>
 </td>
 </tr>

 <tr>
 <td height = "20">
 No. of Queries:
 </td>
 <td height = "20">
 <%=j%>
 </td>
 </tr>
<%
 statement.close();
 dbconn.close();
%>
</table>
</body>
</html>

errorsDisplay.jsp
<%@ page language="java" import="java.sql.*, RMIHelper" %>
<%@ page import="java.util.*" %>

<html>

<head>
<META HTTP-EQUIV="Refresh" CONTENT="10;
URL=http://magellan.cs.iupui.edu:8080/srikanth/jsp/errorsDisplay.jsp">
<title>Error Page</title>
</head>

<body>
 <table width="190" border="0" cellspacing="1" cellpadding="0">
 <tr>
 <td bgcolor="#800000" height="20" colspan="2" align="center" bordercolor="#C0C0C0" >

 Errors

 </td>
 </tr>

 <tr>
 <%
 RMIHelper obj2 = new RMIHelper();
 StringBuffer errBuff = (StringBuffer) obj2.getError();

 if(errBuff.length() == 0)
 {
 System.out.println("No Errors so far");
 %>
 <td>
 <p align="left">No Errors so far </p>
 </td>

 158

 <%
 }
 else
 {
 System.out.println("Errors encountered \n");
 System.out.println("printing StringBuffer "+ errBuff.toString());
 %>
 <td>
 <p align="left">Error encountered

 <%=errBuff.toString()%>
 </p>
 </td>
 <%
 }
 %>
 </tr>

</table>
</body>
</html>

ExceptionHandler.jsp
<%@ page isErrorPage="true" import="java.io.*" %>
<html>
<head>
 <title>Exceptional Even Occurred!</title>
 <style>
 body, p { font-family:Tahoma; font-size:10pt; padding-left:30; }
 pre { font-size:8pt; }
 </style>
</head>
<body>

<%-- Exception Handler --%>

<%= exception.toString() %>

<%
out.println("<!--");
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
exception.printStackTrace(pw);
out.print(sw);
sw.close();
pw.close();
out.println("-->");
%>

</body>
</html>

mainSI.jsp
<%
if(request.getParameter("mainSI.jsp") != null)
 {
 if(request.getParameter("selection").trim().equals("SubmitQuery"))
 {

 159

%>
 <jsp:forward page="newQuery.jsp" />
<%
 }
 else if(request.getParameter("selection").trim().equals("DisplayResults"))
 {
%>
 <jsp:forward page="displayResults.jsp" />
<%
 }
 }
%>

<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>
<form method="post" action="mainSI.jsp">

<p>
<table border="1" bgcolor="#C0C0C0">

<tr bgcolor="#808080" align="center">
 <td> Select </td>
 <td> Task </td>
</tr>
<tr>
 <td align="center">
 <input type="radio" name="selection" value="SubmitQuery" checked>
 </td>
 <td>
 Submit a query for processing
 </td>
</tr>
<tr>
 <td align="center">
 <input type="radio" name="selection" value="DisplayResults">
 </td>
 <td>
 Display results for a query
 </td>
</tr>
</table>

 <input type="submit" name="mainSI.jsp" value="Submit">
</form>

</center>
</body>
</html>

newQuery.jsp
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>

 160

<%@ page import="java.util.*" %>
<body bgcolor = #F8F7D9>
<form name="newQuery" method="post" action="processQuery.jsp">

 <%
 Integer localCounter=(Integer)session.getAttribute("queryId");
 int myCounter=localCounter.intValue();
 myCounter = myCounter + 1;
 session.setAttribute("queryId",(Object) (new Integer(myCounter)));

%>
 <table width="600" border="0" cellspacing="1" cellpadding="0">
 <tr>
 <td bgcolor="#CCCCCC" valign="top" height="30" colspan="5" >
 <p align="center">
 System Integrator View of URDS
 </td>
 </tr>
 </p>
 <tr>
 <td height="30" valign="top" colspan="2">Query ID</td>
 <td colspan="3" valign="top" height="30">
 <%=myCounter%>
 </td>
 </tr>

 <tr>
 <td height="30" valign="top" colspan="2">Component Name</td>

 <td colspan="3" valign="top" height="30">
 <input type="text" name="compName" size="30" value="Document">
 </td>
 </tr>

 <tr>
 <td height="30" valign="top" colspan="2">Response Time </td>

 <td colspan="3" valign="top" height="30">
 <input type="text" name="respTime" size="10" value="12000">
 </td>
 </tr>
 </table>
 <table>
 <tr>
 <td>
 <input type="submit" name="newQuery" value="Submit Query" style="float: left">
 </td>
 <td>
 <input type="reset" name="Submit2" value="Reset Form" style="float: left">
 </td>
 </tr>
 </table>
 </form>
 </body>
 </html>

processQuery.jsp
<%@ page import="java.util.*, java.lang.*, RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

 161

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("newQuery")!=null)
 {
 String Qid = (String) request.getParameter("queryID");
 String cName = (String) request.getParameter("compName");
 String temp = (String) request.getParameter("respTime");
 long reTime = Long.parseLong(temp);
 if(cName != null && reTime != 0)
 {
 status = (int)Helper.subQuery(cName, reTime);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
%>
 <p> Query submitted successfully </p>
<%
 }
 else
 {
%>
 <p> Invalid parameters: resubmit the query </p>
<%
 }
%>
</center>
</body>
</html>

displayResults.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>

<html>

<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="displayResults" method = "post" action="Results.jsp" >
<table width="774" border="0" cellspacing="1" cellpadding="0">

 162

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Get Query Results</p>
</tr>

<tr valign="center">

 <td height="21" colspan="2">Select Query ID</td>

 <td valign="top" colspan="4" height="21" width="478">
 <select name="queryID">

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select DISTINCT(QID) from qmresults");
 String qidlist="";

 while(rst.next())
 {
 qidlist=rst.getString("QID");
%>
 <option value="<%= qidlist %>" > <%= qidlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>

 </select></td>
</tr>
</table>

<p align="center">
 <input type="submit" name="getResults" value="Get Results">
 <input type="reset" name="Submit2" value="Reset Form">
</p>

</form>
</body>
</html>

Results.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page import="java.util.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>

<html>
<head>
<meta http-equiv="PRAGMA" content="NO-CACHE">
</head>
<body bgcolor = #F8F7D9>
<%
 String Qid = "";
 if(request.getParameter("getResults") != null)
 {

 163

 Qid = (String) request.getParameter("queryID").trim();
 }
 else
 {
%>
 <p> Invalid Entry </p>
<%
 }
%>

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn = DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl",
"urdsmon", "reddi");
 Statement statement = dbconn.createStatement();
%>
 <table width="700" border="0" cellspacing="1" cellpadding="0" height="84">
 <tr>
 <td bgcolor="#800000" height="30" colspan="5" align="center" bordercolor="#C0C0C0" >

 Query Results

 </td>
 </tr>

 <tr>
 <td width="246">
 <p align="left">
 Details of the Submitted Query
 </td>
 </tr>
 <tr>
 <td width="246">
 Query ID
 </td>

 <td width="451">
 <%=Qid%>
 </td>
 </tr>
 </table>
 <hr>
 <table>

 <tr>
 <td>
 Results
 </td>
 </tr>
 <%
 String querystring = "SELECT * FROM QMRESULTS WHERE QID = '"+Qid+"'";
 ResultSet rst = statement.executeQuery(querystring);

 String queryID = "";
 float respTime = 0;
 int cno = 0;

 while(rst.next())
 {
 queryID = rst.getString("QID");
 respTime = rst.getFloat("RTIME");

 164

 cno = rst.getInt("CMATCH");
 }
 %>

 <tr>
 <td height="28" width="207">
 No of Components Matched
 </td>

 <td height="28" width="490">
 <%=cno%>
 </tr>

 <tr>
 <td height="28" width="207">
 Response Time of the Query
 </td>

 <td height="28" width="490">
 <%=respTime%>
 </tr>
 </table>
 <table border="1" bgcolor="#C0C0C0" width="704">
 <tr bgcolor="#808080">
 <td>
 Component Name
 </td>
 <td>
 Component ID
 </td>
 <td> Component Rating </td>
 <%
 ResultSet rst1 = statement.executeQuery("select cname, cid, crating from urdsresults where qid
='"+queryID+"' order by crating desc");
 String CoID="";
 String CoName="";
 float CoRating = 0;

 while(rst1.next())
 {
 CoName=rst1.getString("CNAME");
 CoID=rst1.getString("CID");
 CoRating = rst1.getFloat("CRATING");
 %>
 <tr>
 <td height = "28" width="206">
 <%=CoName%>
 </td>

 <td height = "28" width="349">
 <%=CoID%>
 </td>

 <td>
 <%=CoRating%>
 </td>
 </tr>
<%
 }
 statement.close();
 dbconn.close();

 165

%>
</table>
</body>
</html>

DSMStart.jsp
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h1><center>URDS Monitoring and Management System
(URDSMMS)</center></h1>
 </td>
 </tr>
</table>

<form name="startDSM" method = "post" action="processDSM.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Starting Domain Security Manager </p>
</tr>
<tr>
 <td height="25" valign="center" colspan="3" >Enter the location

 (where DSM has to be started)</td>

 <td colspan="3" valign="center" height="25" >
 <input type="text" name="dsmLocation" size="30">
 </td>
</tr>

<tr>

 <td height="25" valign="center" colspan="3" >Enter the port no
 </td>

 <td colspan="3" valign="center" height="25" >
 <input type="text" name="portNo" size="10">
 </td>
</tr>

</table>

<p align="center">
 <input type="submit" name="StartDSM" value="Start DSM">
 <input type="reset" name="Submit2" value="Reset Form">
</p>
</form>
</body>
</html>

processDSM.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

 166

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StartDSM")!=null)
 {
 String dsmAddress = (String) request.getParameter("dsmLocation");
 String port = request.getParameter("portNo");
 Integer portno = new Integer(Integer.parseInt(port));
 if(dsmAddress != null && portno.intValue() >1000)
 {
 status = (int)Helper.startDSM(dsmAddress, portno.intValue());
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 DSM started successfully
<%
 }
 else
 {
%>
 Invalid parameters: DSM not started
<%
 }
%>
</center>
</body>
</html>

HHStart.jsp
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<%@ page language="java" import="java.sql.*" %>
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="startHH" method = "post" action="processHH.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >

 167

 <p align="center">
 Starting Headhunter </p>
</tr>
<tr>

 <td height="25" valign="center" colspan="2">Enter the location

 (where HH has to be started)</td>

 <td colspan="3" valign="center" height="25">
 <input type="text" name="hhLocation" size="50">
 </td>
</tr>

<tr>
 <td height="21" valign="center" colspan="2">Enter the port no </td>

 <td colspan="3" valign="center" height="21">
 <input type="text" name="portNo" size="10">
 </td>
</tr>
<tr valign="center">
 <td height="21" colspan="2">Select DSM Location</td>
 <td valign="top" colspan="4" height="21">
 <select name="dsmLocation">
<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select dsmid from dsm");
 System.out.println("Query executed");
 String dsmlist="";
 while(rst.next())
 {
 dsmlist=rst.getString("DSMID");
%>
 <option value="<%= dsmlist %>" > <%= dsmlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>
 </select>
 </td>
</tr>
<tr valign="top">
 <td height="21" colspan="2">Domain</td>
 <td valign="top" colspan="4" height="21">
 <select name="domain">
 <option value="Document" selected>Document</option>
 <option value="Banking" >Banking</option>
 <option value="Finance" >Finance</option>
 <option value="Manufacturing">Manufacturing</option>
 </select>
 </td>
</tr>
<tr>
 <td height="25" valign="center" colspan="2">Enter Headhunter Name </td>
 <td colspan="3" height="25">
 <input type="text" name="hhName" size="25">

 168

 </td>
</tr>

<tr>
 <td height="25" valign="center" colspan="2">Enter Headhunter Password </td>
 <td colspan="3" valign="center" height="25">
 <input type="password" name="hhPwd" size="25">
 </td>
</tr>
</table>
<p align="center">
 <input type="submit" name="StartHH" value="Start HH">
 <input type="reset" name="Submit1" value="Reset Form">
</p>
</form>
</body>
</html>

processHH.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StartHH")!=null)
 {
 String hhAddress = (String) request.getParameter("hhLocation");
 String port = request.getParameter("portNo");
 String dsmLocation = (String) request.getParameter("dsmLocation");
 String domain = (String) request.getParameter("domain");
 String name = (String) request.getParameter("hhName");
 String pwd = (String) request.getParameter("hhPwd");

 Integer portno = new Integer(Integer.parseInt(port));
 if(hhAddress != null && dsmLocation != null && domain != null && portno.intValue() >1000 && name != null
&& pwd != null)
 {
 status = (int)Helper.startHH(hhAddress, portno.intValue(), dsmLocation, domain, name, pwd);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 HH started successfully
<%
 }
 else
 {
%>

 169

 Invalid parameters: HH not started
<%
 }
%>
</center>
</body>
</html>

ARStart.jsp
<html>

<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<%@ page language="java" import="java.sql.*" %>

<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="startAR" method = "post" action="processAR.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">
<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Starting Active Registry </p>
</tr>
<tr>
 <td height="25" valign="center" colspan="2">Enter the location

 (where AR has to be started)</td>

 <td colspan="3" valign="center" height="25">
 <input type="text" name="arLocation" size="50">
 </td>
</tr>

<tr>
 <td height="21" valign="center" colspan="2">Enter the port no </td>
 <td colspan="3" valign="center" height="21">
 <input type="text" name="portNo" size="10">
 </td>
</tr>

<tr>
 <td height="21" valign="center" colspan="2">Enter the port no where Component is running </td>
 <td colspan="3" valign="center" height="21">
 <input type="text" name="coportNo" size="10">
 </td>
</tr>

<tr valign="center">
 <td height="21" colspan="2">Select DSM Location</td>
 <td valign="top" colspan="4" height="21">
 <select name="dsmLocation">
<%

 170

 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select dsmid from dsm");
 System.out.println("Query executed");
 String dsmlist="";
 while(rst.next())
 {
 dsmlist=rst.getString("DSMID");
%>
 <option value="<%= dsmlist %>" > <%= dsmlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>
 </select>
 </td>
</tr>
<tr valign="top">
 <td height="21" colspan="2">Domain</td>
 <td valign="top" colspan="4" height="21">
 <select name="domain">
 <option value="Document" selected>Document</option>
 <option value="Banking" >Banking</option>
 <option value="Finance" >Finance</option>
 <option value="Manufacturing">Manufacturing</option>
 </select>
 </td>
</tr>

<tr>
 <td height="25" valign="center" colspan="2">Enter Active Registry's Name </td>

 <td colspan="3" height="25">
 <input type="text" name="arName" size="25">
 </td>
</tr>

<tr>
 <td height="25" valign="center" colspan="2">Enter Active Registry's Password </td>
 <td colspan="3" valign="center" height="25">
 <input type="password" name="arPwd" size="25">
 </td>
</tr>
</table>

<p align="center">
 <input type="submit" name="StartAR" value="Start AR">
 <input type="reset" name="Submit1" value="Reset Form">
</p>
</form>
</body>
</html>

processAR.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

 171

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StartAR")!=null)
 {
 String arAddress = (String) request.getParameter("arLocation");
 String port = request.getParameter("portNo");
 String coport = request.getParameter("coportNo");
 String dsmLocation = (String) request.getParameter("dsmLocation");
 String domain = (String) request.getParameter("domain");
 String name = (String) request.getParameter("arName");
 String pwd = (String) request.getParameter("arPwd");
 Integer portno = new Integer(Integer.parseInt(port));
 Integer coportno = new Integer(Integer.parseInt(coport));

 if(arAddress != null && dsmLocation != null && domain != null && portno.intValue() >1000 &&
coportno.intValue() >1000 && name != null && pwd != null)
 {
 status = (int)Helper.startAR(arAddress, portno.intValue(), coportno.intValue(), dsmLocation, domain, name, pwd);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 AR started successfully
<%
 }
 else
 {
%>
 Invalid parameters: AR not started
<%
 }
%>
</center>
</body>
</html>

QMStart.jsp
<html>

<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<%@ page language="java" import="java.sql.*" %>
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System

 172

(URDSMMS)</center></h3>
 </td>
 </tr>
</table>
<form name="startQM" method = "post" action="processQM.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Starting Query Manager </p>
</tr>
<tr>
 <td height="25" valign="center" colspan="2">Enter the location

 (where QM has to be started)</td>

 <td colspan="3" valign="center" height="25">
 <input type="text" name="qmLocation" size="50">
 </td>
</tr>

<tr>
 <td height="21" valign="center" colspan="2">Enter the port no </td>
 <td colspan="3" valign="center" height="21">
 <input type="text" name="portNo" size="10">
 </td>
</tr>

<tr valign="center">

 <td height="21" colspan="2">Select DSM Location</td>
 <td valign="top" colspan="4" height="21">
 <select name="dsmLocation">
<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select dsmid from dsm");
 System.out.println("Query executed");
 String dsmlist="";
 while(rst.next())
 {
 dsmlist=rst.getString("DSMID");
%>
 <option value="<%= dsmlist %>" > <%= dsmlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>
 </select>
 </td>
</tr>
<tr>
 <td height="25" valign="center" colspan="2">Enter Query Manager's Name </td>
 <td colspan="3" height="25">
 <input type="text" name="qmName" size="25">
 </td>
</tr>

 173

<tr>
 <td height="25" valign="center" colspan="2">Enter Query Manager's Password </td>
 <td colspan="3" valign="center" height="25">
 <input type="password" name="qmPwd" size="25">
 </td>
</tr>
</table>
<p align="center">
 <input type="submit" name="StartQM" value="Start QM">
 <input type="reset" name="Submit1" value="Reset Form">
</p>
</form>
</body>
</html>

processQM.jsp
<%@ page import="java.util.*, java.lang.*, RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StartQM")!=null)
 {
 String qmAddress = (String) request.getParameter("qmLocation");
 String port = request.getParameter("portNo");
 String dsmLocation = (String) request.getParameter("dsmLocation");
 String name = (String) request.getParameter("qmName");
 String pwd = (String) request.getParameter("qmPwd");

 Integer portno = new Integer(Integer.parseInt(port));
 if(qmAddress != null && dsmLocation != null && portno.intValue() >1000 && name != null && pwd != null)
 {
 status = (int)Helper.startQM(qmAddress, portno.intValue(), dsmLocation, name, pwd);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 Query Manager started successfully
<%
 }
 else
 {
%>
 Invalid parameters: Query Manager not started
<%
 }
%>

 174

</center>
</body>
</html>

processQM.jsp
<%@ page import="java.util.*, java.lang.*, RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StartQM")!=null)
 {
 String qmAddress = (String) request.getParameter("qmLocation");
 String port = request.getParameter("portNo");
 String dsmLocation = (String) request.getParameter("dsmLocation");
 String name = (String) request.getParameter("qmName");
 String pwd = (String) request.getParameter("qmPwd");

 Integer portno = new Integer(Integer.parseInt(port));
 if(qmAddress != null && dsmLocation != null && portno.intValue() >1000 && name != null && pwd != null)
 {
 status = (int)Helper.startQM(qmAddress, portno.intValue(), dsmLocation, name, pwd);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 Query Manager started successfully
<%
 }
 else
 {
%>
 Invalid parameters: Query Manager not started
<%
 }
%>
</center>
</body>
</html>

DSMStop.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

 175

<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="stopDSM" method = "post" action="killDSM.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Stop a DSM </p>
</tr>

<tr valign="center">
 <td height="21" colspan="2">Select DSM Location</td>
 <td valign="top" colspan="4" height="21" width="478">
 <select name="dsmLocation">
<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select dsmid from dsm");
 System.out.println("Query executed");
 String dsmlist="";
 while(rst.next())
 {
 dsmlist=rst.getString("DSMID");
%>
 <option value="<%= dsmlist %>" > <%= dsmlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>

 </select>
 </td>
</tr>

</table>

<p align="center">
 <input type="submit" name="StopDSM" value="Stop DSM">
 <input type="reset" name="Submit2" value="Reset Form">
</p>

</form>
</body>
</html>

killDSM.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

 176

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StopDSM")!=null)
 {
 String dsmAddress = (String) request.getParameter("dsmLocation");
 if(dsmAddress != null)
 {
 status = (int)Helper.stopDSM(dsmAddress);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 DSM stopped successfully
<%
 }
 else
 {
%>
 Invalid parameters: DSM not stopped
<%
 }
%>
</center>
</body>
</html>

HHStop.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>

<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="stopHH" method = "post" action="killHH.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>

 177

 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Stop Headhunter</p>
</tr>

<tr valign="center">

 <td height="21" colspan="2">Select Headhunter's Location</td>

 <td valign="top" colspan="4" height="21" width="478">
 <select name="hhLocation">

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select hhid from hh");
 System.out.println("Query executed");
 String hhlist="";

 while(rst.next())
 {
 hhlist=rst.getString("HHID");
%>
 <option value="<%= hhlist %>" > <%= hhlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>

 </select></td>
</tr>

</table>

<p align="center">
 <input type="submit" name="StopHH" value="Stop HH">
 <input type="reset" name="Submit2" value="Reset Form">
</p>

</form>
 </body>
 </html>

killHH.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StopHH")!=null)
 {
 String hhAddress = (String) request.getParameter("hhLocation");
 if(hhAddress != null)
 {

 178

 status = (int)Helper.stopHH(hhAddress);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 Headhunter stopped successfull
<%
 }
 else
 {
%>
 Invalid parameters: Headhunter not stopped
<%
 }
%>
</center>
</body>
</html>

ARStop.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>

<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="stopAR" method = "post" action="killAR.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Stop ActiveRegistry</p>
</tr>

<tr valign="center">

 <td height="21" colspan="2">Select ActiveRegistry's Location</td>

 179

 <td valign="top" colspan="4" height="21" width="478">
 <select name="arLocation">

<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select arid from ar");
 System.out.println("Query executed");
 String arlist="";

 while(rst.next())
 {
 arlist=rst.getString("ARID");
%>
 <option value="<%= arlist %>" > <%= arlist %></option>
<%
 } //while
 statement.close();
 dbconn.close();
%>
 </select></td>
</tr>
</table>

<p align="center">
 <input type="submit" name="StopAR" value="Stop AR">
 <input type="reset" name="Submit2" value="Reset Form">
</p>
</form>
</body>
</html>

killAR.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>

<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StopAR")!=null)
 {
 String arAddress = (String) request.getParameter("arLocation");
 if(arAddress != null)
 {
 status = (int)Helper.stopAR(arAddress);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)

 180

 {
 // Display successful mission
%>
 Active Registry stopped successfull
<%
 }
 else
 {
%>
 Invalid parameters: Active Registry not stopped
<%
 }
%>
</center>
</body>
</html>

QMStop.jsp
<%@ page language="java" import="java.sql.*" %>
<%@ page errorPage="ExceptionHandler.jsp" %>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>
<table border ="0" cellpadding="0" cellspacing="0">
 <tr>
 <td height="50" valign="middle" bgcolor="#999965">
 <h3><center>URDS Monitoring and Management System
(URDSMMS)</center></h3>
 </td>
 </tr>
</table>

<form name="stopQM" method = "post" action="killQM.jsp" >
<table width="550" border="0" cellspacing="1" cellpadding="0">

<tr>
 <td bgcolor="#CCCCCC" valign="center" height="25" colspan="5" >
 <p align="center">
 Stop QueryManager</p>
</tr>
<tr valign="center">

 <td height="21" colspan="2">Select QueryManager's Location</td>
 <td valign="top" colspan="4" height="21" width="478">
 <select name="qmLocation">
<%
 Class.forName("oracle.jdbc.driver.OracleDriver");
 Connection dbconn =
DriverManager.getConnection("jdbc:oracle:thin:@phoenix.cs.iupui.edu:1521:cs9iorcl", "urdsmon", "reddi");
 System.out.println("Database connected");
 Statement statement = dbconn.createStatement();
 ResultSet rst = statement.executeQuery("select qmid from qm");
 System.out.println("Query executed");
 String qmlist="";
 while(rst.next())
 {
 qmlist=rst.getString("QMID");
%>
 <option value="<%= qmlist %>" > <%= qmlist %></option>

 181

<%
 } //while
 statement.close();
 dbconn.close();
%>

 </select></td>
</tr>
</table>

<p align="center">
 <input type="submit" name="StopQM" value="Stop QM">
 <input type="reset" name="Submit2" value="Reset Form">
</p>

</form>
</body>
</html>

killQM.jsp
<%@ page import="java.util.*, java.lang.*,RMIHelper"%>
<%@ page errorPage="ExceptionHandler.jsp" %>
<%
 RMIHelper Helper = new RMIHelper();
 int status = -1;
 if(request.getParameter("StopQM")!=null)
 {
 String qmAddress = (String) request.getParameter("qmLocation");
 if(qmAddress != null)
 {
 status = (int)Helper.stopQM(qmAddress);
 }
 }
%>
<html>
<head> <link rel="stylesheet" href="web.css" type="text/css"> </head>
<body bgcolor="#FFFFFF" text="#000000">
<center>

<%
 if(status ==0)
 {
 // Display successful mission
%>
 Query Manager stopped successfull
<%
 }
 else
 {
%>
 Invalid parameters: Query Manager not stopped
<%
 }
%>
</center>
</body>
</html>

